scholarly journals An effective video processing pipeline for crowd pattern analysis

Author(s):  
Yu Hao ◽  
Zhijie Xu ◽  
Jing Wang ◽  
Ying Liu ◽  
Jiulun Fan
Author(s):  
Sören Klemm ◽  
Robin Rexeisen ◽  
Walter Stummer ◽  
Xiaoyi Jiang ◽  
Markus Holling

2021 ◽  
Author(s):  
Vinika Gupta ◽  
Ariana West ◽  
Yin Bao ◽  
Samantha A Brooks ◽  
Elizabeth A Staiger

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7619
Author(s):  
Jelle De Bock ◽  
Steven Verstockt

Video-based trajectory analysis might be rather well discussed in sports, such as soccer or basketball, but in cycling, this is far less common. In this paper, a video processing pipeline to extract riding lines in cyclocross races is presented. The pipeline consists of a stepwise analysis process to extract riding behavior from a region (i.e., the fence) in a video camera feed. In the first step, the riders are identified by an Alphapose skeleton detector and tracked with a spatiotemporally aware pose tracker. Next, each detected pose is enriched with additional meta-information, such as rider modus (e.g., sitting on the saddle or standing on the pedals) and detected team (based on the worn jerseys). Finally, a post-processor brings all the information together and proposes ride lines with meta-information for the riders in the fence. The presented methodology can provide interesting insights, such as intra-athlete ride line clustering, anomaly detection, and detailed breakdowns of riding and running durations within the segment. Such detailed rider info can be very valuable for performance analysis, storytelling, and automatic summarization.


Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2001 ◽  
Vol 13 (s1) ◽  
pp. S2-S5 ◽  
Author(s):  
Shinji Tanaka ◽  
Ken Haruma ◽  
Shinji Nagata ◽  
Shiro Oka ◽  
Kazuaki Chayama

Sign in / Sign up

Export Citation Format

Share Document