Coverage Control for Multi-Copter with Avoidance of Local Optimum and Collision Using Change of the Distribution Density Map

Author(s):  
Masataka Naruse ◽  
Kazuma Sekiguchi ◽  
Kenichiro Nonaka
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lina Li

In this paper, we analyze and calculate the crowd density in a tourist area utilizing video surveillance dynamic information analysis and divide the crowd counting and density estimation task into three stages. In this paper, novel scale perception module and inverse scale perception module are designed to further facilitate the mining of multiscale information by the counting model; the main function of the third stage is to generate the population distribution density map, which mainly consists of three columns of void convolution with different void rates and generates the final population distribution density map using the feature maps of different branch regressions. Also, the algorithm uses jump connections between the top convolution and the bottom void convolution layers to reduce the risk of network gradient disappearance and gradient explosion and optimizes the network parameters using an intermediate supervision strategy. The hierarchical density estimator uses a hierarchical strategy to mine semantic features and multiscale information in a coarse-to-fine manner, and this is used to solve the problem of scale variation and perspective distortion. Also, considering that the background noise affects the quality of the generated density map, the soft attention mechanism is integrated into the model to stretch the distance between the foreground and background to further improve the quality of the density map. Also, inspired by multitask learning, this paper embeds an auxiliary count classifier in the count model to perform the count classification auxiliary task and to increase the model’s ability to express semantic information. Numerous experimental results demonstrate the effectiveness and feasibility of the proposed algorithm in solving the problems of scale variation and perspective distortion.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


2020 ◽  
pp. 1-11
Author(s):  
Wenjuan Ma ◽  
Xuesi Zhao ◽  
Yuxiu Guo

The application of artificial intelligence and machine learning algorithms in education reform is an inevitable trend of teaching development. In order to improve the teaching intelligence, this paper builds an auxiliary teaching system based on computer artificial intelligence and neural network based on the traditional teaching model. Moreover, in this paper, the optimization strategy is adopted in the TLBO algorithm to reduce the running time of the algorithm, and the extracurricular learning mechanism is introduced to increase the adjustable parameters, which is conducive to the algorithm jumping out of the local optimum. In addition, in this paper, the crowding factor in the fish school algorithm is used to define the degree or restraint of teachers’ control over students. At the same time, students in the crowded range gather near the teacher, and some students who are difficult to restrain perform the following behavior to follow the top students. Finally, this study builds a model based on actual needs, and designs a control experiment to verify the system performance. The results show that the system constructed in this paper has good performance and can provide a theoretical reference for related research.


2020 ◽  
Vol 2020 (10) ◽  
pp. 64-1-64-5
Author(s):  
Mustafa I. Jaber ◽  
Christopher W. Szeto ◽  
Bing Song ◽  
Liudmila Beziaeva ◽  
Stephen C. Benz ◽  
...  

In this paper, we propose a patch-based system to classify non-small cell lung cancer (NSCLC) diagnostic whole slide images (WSIs) into two major histopathological subtypes: adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Classifying patients accurately is important for prognosis and therapy decisions. The proposed system was trained and tested on 876 subtyped NSCLC gigapixel-resolution diagnostic WSIs from 805 patients – 664 in the training set and 141 in the test set. The algorithm has modules for: 1) auto-generated tumor/non-tumor masking using a trained residual neural network (ResNet34), 2) cell-density map generation (based on color deconvolution, local drain segmentation, and watershed transformation), 3) patch-level feature extraction using a pre-trained ResNet34, 4) a tower of linear SVMs for different cell ranges, and 5) a majority voting module for aggregating subtype predictions in unseen testing WSIs. The proposed system was trained and tested on several WSI magnifications ranging from x4 to x40 with a best ROC AUC of 0.95 and an accuracy of 0.86 in test samples. This fully-automated histopathology subtyping method outperforms similar published state-of-the-art methods for diagnostic WSIs.


2010 ◽  
Vol 11 (6) ◽  
pp. 833-838 ◽  
Author(s):  
Jiafu HAN ◽  
Hongsheng LI ◽  
Zhong ZHANG

2010 ◽  
Vol 30 (6) ◽  
pp. 1459-1462
Author(s):  
Yang TAO ◽  
Xiao-ling ZENG ◽  
Wei LUO

2011 ◽  
Vol 30 (6) ◽  
pp. 1437-1440
Author(s):  
Ying-xun Zhu ◽  
Rong Wang ◽  
Xiao-xin Yi

2014 ◽  
Vol 8 (1) ◽  
pp. 723-728 ◽  
Author(s):  
Chenhao Niu ◽  
Xiaomin Xu ◽  
Yan Lu ◽  
Mian Xing

Short time load forecasting is essential for daily planning and operation of electric power system. It is the important basis for economic dispatching, scheduling and safe operation. Neural network, which has strong nonlinear fitting capability, is widely used in the load forecasting and obtains good prediction effect in nonlinear chaotic time series forecasting. However, the neural network is easy to fall in local optimum, unable to find the global optimal solution. This paper will integrate the traditional optimization algorithm and propose the hybrid intelligent optimization algorithm based on particle swarm optimization algorithm and ant colony optimization algorithm (ACO-PSO) to improve the generalization of the neural network. In the empirical analysis, we select electricity consumption in a certain area for validation. Compared with the traditional BP neutral network and statistical methods, the experimental results demonstrate that the performance of the improved model with more precise results and stronger generalization ability is much better than the traditional methods.


Sign in / Sign up

Export Citation Format

Share Document