Research on Power Load Forecasting Model Based on Hybrid Algorithm Optimizing BP Neural Network

2014 ◽  
Vol 8 (1) ◽  
pp. 723-728 ◽  
Author(s):  
Chenhao Niu ◽  
Xiaomin Xu ◽  
Yan Lu ◽  
Mian Xing

Short time load forecasting is essential for daily planning and operation of electric power system. It is the important basis for economic dispatching, scheduling and safe operation. Neural network, which has strong nonlinear fitting capability, is widely used in the load forecasting and obtains good prediction effect in nonlinear chaotic time series forecasting. However, the neural network is easy to fall in local optimum, unable to find the global optimal solution. This paper will integrate the traditional optimization algorithm and propose the hybrid intelligent optimization algorithm based on particle swarm optimization algorithm and ant colony optimization algorithm (ACO-PSO) to improve the generalization of the neural network. In the empirical analysis, we select electricity consumption in a certain area for validation. Compared with the traditional BP neutral network and statistical methods, the experimental results demonstrate that the performance of the improved model with more precise results and stronger generalization ability is much better than the traditional methods.

2018 ◽  
Vol 173 ◽  
pp. 02016
Author(s):  
Jin Liang ◽  
Wang Yongzhi ◽  
Bao Xiaodong

The common method of power load forecasting is the least squares support vector machine, but this method is very dependent on the selection of parameters. Particle swarm optimization algorithm is an algorithm suitable for optimizing the selection of support vector parameters, but it is easy to fall into the local optimum. In this paper, we propose a new particle swarm optimization algorithm, it uses non-linear inertial factor change that is used to optimize the algorithm least squares support vector machine to avoid falling into the local optimum. It aims to make the prediction accuracy of the algorithm reach the highest. The experimental results show this method is correct and effective.


2021 ◽  
Vol 692 (2) ◽  
pp. 022120
Author(s):  
Jianjun Fan ◽  
Xinzhong Liu ◽  
Zhimin Li ◽  
Xinku Wang ◽  
Shengnan Cao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zuoxun Wang ◽  
Xinheng Wang ◽  
Chunrui Ma ◽  
Zengxu Song

Accurate and stable power load forecasting methods are essential for the rational allocation of power resources and grid operation. Due to the nonlinear nature of power loads, it is difficult for a single forecasting method to complete the forecasting task accurately and quickly. In this study, a new combined model for power loads forecasting is proposed. The initial weights and thresholds of the extreme learning machine (ELM) optimized by the chaotic sparrow search algorithm (CSSA) and improved by the firefly algorithm (FA) are used to improve the forecasting performance and achieve accurate forecasting. The early local optimum that exists in the sparrow algorithm is overcome by Tent chaotic mapping. A firefly perturbation strategy is used to improve the global optimization capability of the model. Real values from a power grid in Shandong are used to validate the prediction performance of the proposed FA-CSSA-ELM model. Experiments show that the proposed model produces more accurate forecasting results than other single forecasting models or combined forecasting models.


2011 ◽  
Vol 268-270 ◽  
pp. 1067-1072
Author(s):  
Jia Yang ◽  
Qiang Xu ◽  
Cheng Bo Yu

It is difficult to have good performance to control large delay time system. A neural network identification method for nonlinear system’s delay time was discussed. Using the abrupt mutation resulted from the training error sum square of the real output and the expected output of the network, this method changed the input sample period of the neural network so that it could discriminate the delay time of the nonlinear model. Combining the discrimination of neural network system with long time delay and the control method based on model prediction, searching PID controller parameters based on ant colony optimization algorithm, it was applied to control boiler combustion system. The simulation results show that this scheme has much better advantage of celerity and robustness.


2013 ◽  
Vol 389 ◽  
pp. 849-853
Author(s):  
Fang Song Cui ◽  
Wei Feng ◽  
Da Zhi Pan ◽  
Guo Zhong Cheng ◽  
Shuang Yang

In order to overcome the shortcomings of precocity and stagnation in ant colony optimization algorithm, an improved algorithm is presented. Considering the impact that the distance between cities on volatility coefficient, this study presents an model of adjusting volatility coefficient called Volatility Model based on ant colony optimization (ACO) and Max-Min ant system. There are simulation experiments about TSP cases in TSPLIB, the results show that the improved algorithm effectively overcomes the shortcoming of easily getting an local optimal solution, and the average solutions are superior to ACO and Max-Min ant system.


Sign in / Sign up

Export Citation Format

Share Document