scholarly journals GEODESY, CARTOGRAPHY, AND AERIAL PHOTOGRAPHY

2021 ◽  
Vol 93,2021 (93) ◽  
pp. 48-58
Author(s):  
Bohdan Palianytsia ◽  
◽  
Bohdan Kladochnyi ◽  
Oksana Palianytsia ◽  
◽  
...  

The purpose of this work is to build 3D models of components of zenith tropospheric delay (ZTD) according to the surface measurements of meteorological values obtained at 100 points, which is almost evenly distributed throughout Ukraine. Method. Saastamoinen formulas calculated dry and wet components of the zenith tropospheric delay. According to the obtained results, the fields of dry and wet components of tropospheric delay were compiled, the fields of their change were constructed using a different number of studied points. Also, with the help of a graphic editor, 3D models of the magnitude one-moment distribution of dry and wet components of the zenith tropospheric delay for the territory of Ukraine were built. Results. Built 3D models of ZTD components; constructed zenith tropospheric delay fields for the territory of Ukraine; a comparison of the distribution of delay components for the specified area and its change during the day are the results of this work. It is established that the dry component becomes more important in the southern and central territory of Ukraine, where the observation points are lower in height and where there is a higher atmospheric pressure, which dominates in the calculation of this component. Accordingly, the wet component is also higher in the southern part of Ukraine, but this is due to higher relative humidity. As a result of the compaction of the network to 100 points, more accurate models of component distribution were obtained, which allowed Ukraine to assess in more detail the value of tropospheric delay for the territory of Ukraine. Further compaction of the network for the territory of Ukraine did not lead to the expected increase in the accuracy of tropospheric delay, as the location of meteorological stations in the country is not uniform enough, and some values of meteorological magnitudes are obtained not by direct measurements but by interpolation. It is necessary to compact the model with reliable meteorological measurements evenly and to control the calculation of components by integrating according to the aerological soundings carried out at individual points to obtain a more detailed model. Scientific novelty and practical significance. The scientific novelty is to build 3D models of tropospheric delay components for the territory of Ukraine at a certain point in time. The practical significance of the performed research is that they can be used as an initial step to build a Spatio-temporal model of tropospheric delay, reflecting the spatial changes of the delay in real-time for a particular area.

2020 ◽  
Vol 92,2020 (92) ◽  
pp. 5-14
Author(s):  
B. B. Palianytsia ◽  
◽  
B. V. Kladochnyi ◽  
Kh. B. Palianytsia ◽  
◽  
...  

The aim of this work is to study the fluctuations of the components of the zenith tropospheric delay during the annual period according to the ground meteorological measurements in Ukraine. Methodolodgy. The surface values of meteorological values at the stations: Lviv, Kyiv, Kharkiv and Odesa, obtained in 2019 with an interval of 3 hours were used for the research. A total amount of 2020 measurements at each of the stations has been presented. The calculation of the components of the zenith tropospheric delay was performed according to the Saastamoinen formula. According to the calculated values of the components, graphs of changes in the dry and wet components of the zenith tropospheric delay for each of the stations during constructed. Subsequently, the monthly average and annual average values of the components were calculated and compared with each other. Results. Based on studies of changes in delay values at four Ukrainian meteorological stations for the period of 2019, it was found that the monthly average values of ZHD component are higher at stations whose altitude is lower. The wet component of ZWD during the year acquires the biggest values in summer. Annual fluctuations of the dry component of ZHD have a much smaller amplitude than the wet ZWD. The amplitude of the change in the total delay is determined by the amplitude of the change of the wet component, which at different stations is almost two times bigger than the amplitude of the change of the dry component, although ZWD is only up to 10% of ZTD. Thus, the variations in the total tropospheric delay, which indirectly reflects the weather and climatic processes due to variations in the wet component. Scientific novelty and practical significance consist in identifying the features of the annual change in the components of tropospheric delay at stations in different climatic and weather conditions. The performed research can be used in the tasks of monitoring of large hydraulic structures by GNSS methods to create regional models of the atmosphere and further studies of tropospheric delay, as they relate to its changes in space and time.


Radio Science ◽  
2020 ◽  
Vol 55 (5) ◽  
Author(s):  
Fei Li ◽  
Qingchuan Zhang ◽  
Shengkai Zhang ◽  
Jintao Lei ◽  
Wenhao Li

2021 ◽  
Vol 41 (I) ◽  
pp. 46-54
Author(s):  
B. KLADOCHNYI ◽  
◽  
B. PALIANYTSIA ◽  

The aim of this work is to study the zenith tropospheric delay components fluctuations according to the atmospheric sounding data and analytical model in selected period and accuracy assessment of Saastamoinen model. Methodology. The main methods for calculation ZTD are atmospheric sounding and using analytical models. To study ZTD components we use atmospheric sounding data conducted at 4 Ukrainian upper air stations (Kyiv, Kharkiv, Lviv, Odesa) with 24 hours frequency, as well as near-surface atmospheric variables provided by weather stations with 3 hours frequency in the period from January 1 to December 31, 2019. ZTD components were calculated by integration using sounding data, and using Saastamoinen’s formulas. Based on the calculated data, created graphs comparing the values of sounding and model. Calculated the standard error of Saastamoinen model. Results. Compared ZTD components at points, located in different climatic zones, using the atmospheric pressure reduced to sea level. Both ZDD and ZWD are the largest at Odesa station. Annual fluctuation of ZDD are 8–20 mm and ZWD fluctuations are 75–95 mm. The daily amplitudes of ZDD are 5–6 mm in summer and 12–13 mm in winter. The daily amplitudes of ZWD are 20–30 mm in summer and 6–8 mm in winter. The standard error of Saastamoinen’s model is 7 mm for ZDD and 22 mm for ZWD. Scientific novelty and practical significance in that the study can improve accuracy and evaluate the feasibility of using different methods for calculating ZTD, see the dynamic of change ZDD and ZWD and their behavior over a long period. The results can be used for further studies of ZTD and improving the accuracy of satellite observations.


2021 ◽  
Vol 13 (5) ◽  
pp. 1004
Author(s):  
Song Li ◽  
Tianhe Xu ◽  
Nan Jiang ◽  
Honglei Yang ◽  
Shuaimin Wang ◽  
...  

The meteorological reanalysis data has been widely applied to derive zenith tropospheric delay (ZTD) with a high spatial and temporal resolution. With the rapid development of artificial intelligence, machine learning also begins as a high-efficiency tool to be employed in modeling and predicting ZTD. In this paper, we develop three new regional ZTD models based on the least squares support vector machine (LSSVM), using both the International GNSS Service (IGS)-ZTD products and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data over Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and ERA5P-ZTD as the background data by the model method and integral method, respectively. Depending on different background data, three schemes are designed to construct ZTD models based on the LSSVM algorithm, including the without background data, with the ERA5S-ZTD, and with the ERA5P-ZTD. To investigate the advantage and feasibility of the proposed ZTD models, we evaluate the accuracy of two background data and three schemes by segmental comparison with the IGS-ZTD of 85 IGS stations in Europe. The results show that the overall average Root Mean Square Errors (RMSE) value of all sites is 30.1 mm for the ERA5S-ZTD, and 10.7 mm for the ERA5P-ZTD. The overall average RMSE is 25.8 mm, 22.9 mm, and 9 mm for the three schemes, respectively. Moreover, the overall improvement rate is 19.1% and 1.6% for the ZTD model with ERA5S-ZTD and ERA5P-ZTD, respectively. In order to explore the reason of the lower improvement for the ZTD model with ERA5P-ZTD, the loop verification is performed by estimating the ZTD values of each available IGS station. In actuality, the monthly improvement rate of estimated ZTD is positive for most stations, and the biggest improvement rate can even reach about 40%. The negative rate mainly comes from specific stations, these stations are located on the edge of the region, near the coast, as well as the lower similarity between the individual verified station and training stations.


Sensors ◽  
2017 ◽  
Vol 18 (2) ◽  
pp. 65 ◽  
Author(s):  
Yidong Lou ◽  
Jinfang Huang ◽  
Weixing Zhang ◽  
Hong Liang ◽  
Fu Zheng ◽  
...  

2010 ◽  
Vol 9 (1) ◽  
pp. 27-35
Author(s):  
Ryuji Shibata ◽  
Hajime Nagahara

Image-based modeling methods for generating 3D models from an image sequence have been widely studied. Most of these methods, however, require huge redundant spatio-temporal images to estimate scene depth. This is not an effective use of capturing higher resolution texture. On the other hand, a route panorama, which is a continuous panoramic image along a path, is an efficient way of consolidating information from multiple viewpoints into a single image. A route panorama captured by a line camera also has the advantage of capturing higher resolution easily. In this paper, we propose a method for estimating the depth of an image from a route panorama using color drifts. The proposed method detects color drift by deformable window matching of the color channels. It also uses a hierarchical belief propagation to estimate the depth stably and decrease the computation cost thereof.


2016 ◽  
Author(s):  
YiBin Yao ◽  
YuFeng Hu ◽  
Chen Yu ◽  
Bao Zhang ◽  
JianJian Guo

Abstract. The zenith tropospheric delay (ZTD) is an important atmospheric parameter in the wide application of GNSS technology in geoscience. Given that the temporal resolution of the current Global Zenith Tropospheric Delay model (GZTD) is only 24 h, an improved model GZTD2 has been developed by taking the diurnal variations into consideration and modifying the model expansion function. The data set used to establish this model is the global ZTD grid data provided by Global Geodetic Observing System (GGOS) Atmosphere spanning from 2002 to 2009. We validated the proposed model with respect to ZTD grid data from GGOS Atmosphere, which was not involved in modeling, as well as International GNSS Service (IGS) tropospheric product. The obtained results of ZTD grid data show that the global average Bias and RMS for GZTD2 model are 0.2 cm and 3.8 cm respectively. The global average Bias is comparable to that of GZTD model, but the global average RMS is improved by 3 mm. The Bias and RMS are far better than EGNOS model and the UNB series models. The testing results from global IGS tropospheric product show the Bias and RMS (−0.3 cm and 3.9 cm) of GZTD2 model are superior to that of GZTD (−0.3 cm and 4.2 cm), suggesting higher accuracy and reliability compared to the EGNOS model, as well as the UNB series models.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Samuel Osah ◽  
Akwasi A. Acheampong ◽  
Collins Fosu ◽  
Isaac Dadzie

The growing demand for Global Navigation Satellite System (GNSS) technology has necessitated the establishment of a vast and ever-growing network of International GNSS Service (IGS) tracking stations worldwide. The IGS provides highly accurate and highly reliable daily time-series Zenith Tropospheric Delay (ZTD) products using data from the member sites towards the use of GNSS for precise geodetic, climatological, and meteorological applications. However, if for reasons like poor internet connectivity, equipment failure, and power outages, the IGS station is inaccessible or malfunctioning, and gaps are created in the data archive resulting in degrading the quality of the ZTD and precipitable water vapour (PWV) estimation. To address this challenge as a means of providing an alternative data source to improve the continuous availability of ZTD data and as a backup data in the event that the IGS site data are missing or unavailable in West Africa, this paper compares the sitewise operational Vienna Mapping Functions 3 (VMF3) ZTD product with the IGS final ZTD product over five IGS stations in West Africa. Eight different statistical evaluation metrics, such as the mean bias (MB), mean absolute error (MAE), root mean squared error (RMSE), Pearson correlation coefficient (r), coefficient of determination (r2), refined index of agreement (IAr), Nash–Sutcliffe coefficient of efficiency (NSE), and the fraction of prediction within a factor of two (FAC2), are employed to determine the degree of agreement between the VMF3 and IGS tropospheric products. The results show that the VMF3-ZTD product performed excellently and matches very well with the IGS final ZTD product with an average MB, MAE, RMSE, r, r2, NSE, IAr, and FAC2 of 0.38 cm, 0.87 cm, 1.11 cm, 0.988, 0.976, 0.967, 0.992, and 1.00 (100%), respectively. This result is an indication that the VMF3-ZTD product is accurate enough to be used as an alternative source of ZTD data to augment the IGS final ZTD product for positioning and meteorological applications in West Africa.


Sign in / Sign up

Export Citation Format

Share Document