Rewards 1: The Biology of Pollen

Author(s):  
Pat Willmer

This chapter examines the biology of pollen, the primary reward for flowers in an evolutionary sense and probably the resource for which animals first went to flowers. The inherent characteristics of pollen make it a useful resource to exploit as food, potentially collectable by almost any animal. It remains a crucial reward for pollen-eating and pollen-gathering visitors, such as some flies, some beetles, and virtually all bees. Pollen’s function as a reward of visitors is mutually incompatible with its function in reproduction. The chapter first describes the characteristics of pollen grains before discussing the storage and delivery of pollen in the plant. It then considers pollen packaging, pollen gathering by animals, pollen as food, and pollen preferences. It also explores the longevity and viability of pollen, pollen-only flowers, and pollen competition. Finally, it reflects on the question of how much pollen a plant “should” produce.

Author(s):  
John R. Rowley

The morphology of the exine of many pollen grains, at the time of flowering, is such that one can suppose that transport of substances through the exine occurred during pollen development. Holes or channels, microscopic to submicroscopic, are described for a large number of grains. An inner part of the exine of Epilobium angustifolium L. and E. montanum L., which may be referred to as the endexine, has irregularly shaped channels early in pollen development although by microspore mitosis there is no indication of such channeling in chemically fixed material. The nucleus in microspores used in the experiment reported here was in prophase of microspore mitosis and the endexine, while lamellated in untreated grains, did not contain irregularly shaped channels. Untreated material from the same part of the inflorescence as iron treated stamens was examined following fixation with 0.1M glutaraldehyde in cacodylate-HCl buffer at pH 6.9 (315 milliosmoles) for 24 hrs, 4% formaldehyde in phosphate buffer at pH 7.2 (1,300 milliosmoles) for 12 hrs, 1% glutaraldehyde mixed with 0.1% osmium tetroxide for 20 min, osmium tetroxide in deionized water for 2 hrs and 1% glutaraldehyde mixed with 4% formaldehyde in 0.1M cacodylate-HCl buffer at pH 6.9 for two hrs.


Author(s):  
Liza B. Martinez ◽  
Susan M. Wick

Rapid freezing and freeze-substitution have been employed as alternatives to chemical fixation because of the improved structural preservation obtained in various cell types. This has been attributed to biomolecular immobilization derived from the extremely rapid arrest of cell function. These methods allow the elimination of conventionally used fixatives, which may have denaturing or “masking” effects on proteins. Thus, this makes them ideal techniques for immunocytochemistry, in which preservation of both ultrastructure and antigenicity are important. These procedures are also compatible with cold embedding acrylic resins which are known to increase sensitivity in immunolabelling.This study reveals how rapid freezing and freeze-substitution may prove to be useful in the study of the mobile allergenic proteins of rye grass and ragweed. Most studies have relied on the use of osmium tetroxide to achieve the necessary ultrastructural detail in pollen whereas those that omitted it have had to contend with poor overall preservation.


2014 ◽  
Vol 27 (1) ◽  
pp. 245-253
Author(s):  
Muhannad R. J. Allamy ◽  
TTaha Y. Al-Edany
Keyword(s):  

2020 ◽  
Vol 62 (1-2) ◽  
pp. 151-161
Author(s):  
T. Shagholi ◽  
M. Keshavarzi ◽  
M. Sheidai

Tamarix L. (Tamaricaceae) is a halophytic shrub in different parts of Asia and North Africa. Taxonomy and species limitation of Tamarix is very complex. This genus has three sections as Tamarix, Oligadenia, and Polyadenia, which are mainly separated by petal length, the number of stamens, the shape of androecial disk and attachment of filament on the androecial disk. As there was no palynological data on pollen features of Tamarix species of Iran, in the present study 12 qualitative and quantitative pollen features were evaluated to find diagnostic ones. Pollen grains of 8 Tamarix species were collected from nature. Pollen grains were studied without any treatment. Measurements were based on at least 50 pollen grains per specimen. Light and scanning electron microscopes were used. Multivariate statistical methods were applied to clarify the species relationships based on pollen data. All species studied showed monad and tricolpate (except some individuals of T. androssowii). Some Tamarix species show a high level of variability, in response to ecological niches and phenotypic plasticity, which make Tamarix species separation much more difficult. Based on the results of the present study, pollen grains features are not in agreement with previous morphological and molecular genetics about the sectional distinction.


2020 ◽  
Vol 8 (14) ◽  
pp. 20-28
Author(s):  
Leonora Adamchuk ◽  
◽  
Vladyslav Sukhenko ◽  
Mykola Skoryk ◽  
◽  
...  

Palaeobotany ◽  
2012 ◽  
Vol 3 ◽  
pp. 5-11
Author(s):  
A. V. Gomankov ◽  
V. F. Tarasevich

Dispersed bisaccate pollen grains of Scutasporites nanuki were studied by means of LM, SEM and TEM. Sacci ultrastructure of these pollen grains was rather peculiar. Sacci were like a thin fi lmy fringe attached to the central body near the equator. They were fi lled with sporopollenin elements of irregular shape and various dimensions with equally various cavities between them. Such an ultrastructure is called as spongy. The morphology and ultrastructure of S. nanuki is discussed in the context of the evolution of early conifers.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


Sign in / Sign up

Export Citation Format

Share Document