Numerical Method

Author(s):  
Gary A. Glatzmaier

This chapter describes a numerical method for solving equations of thermal convection on a computer. It begins by introducing the vorticity-streamfunction formulation as a means of conserving mass. The approach involves updating for the vorticity first and then solving for the fluid velocity each time step. The chapter continues with a discussion of two very different spatial discretizations, whereby the vertical derivatives are approximated with a finite-difference method and the horizontal derivatives with a spectral method. The nonlinear terms are computed in spectral space. The chapter also considers the Adams-Bashforth time integration scheme and explains how the Poisson equation can be solved at each time step for the updated streamfunction given the updated vorticity.

2019 ◽  
Vol 86 (8) ◽  
Author(s):  
Weicheng Huang ◽  
Mohammad Khalid Jawed

Discrete elastic rods (DER) algorithm presents a computationally efficient means of simulating the geometrically nonlinear dynamics of elastic rods. However, it can suffer from artificial energy loss during the time integration step. Our approach extends the existing DER technique by using a different time integration scheme—we consider a second-order, implicit Newmark-beta method to avoid energy dissipation. This treatment shows better convergence with time step size, specially when the damping forces are negligible and the structure undergoes vibratory motion. Two demonstrations—a cantilever beam and a helical rod hanging under gravity—are used to show the effectiveness of the modified discrete elastic rods simulator.


Author(s):  
G. F. Mathews ◽  
R. L. Mullen ◽  
D. C. Rizos

This paper presents the development of a semi-implicit time integration scheme, originally developed for structural dynamics in the 1970’s, and its implementation for use in Discrete Element Methods (DEM) for rigid particle interaction, and interaction of elastic bodies that are modeled as a cluster of rigid interconnected particles. The method is developed in view of ballast modeling that accounts for the flexibility of aggregates and the arbitrary shape and size of granules. The proposed scheme does not require any matrix inversions and is expressed in an incremental form making it appropriate for non-linear problems. The proposed method focuses on improving the efficiency, stability and accuracy of the solutions, as compared to current practice. A critical discussion of the findings of the studies is presented. Extended verification and assessment studies demonstrate that the proposed algorithm is unconditionally stable and accurate even for large time step sizes. It is demonstrated that the proposed method is at least as computationally efficient as the Central Difference Method. Guidelines for the implementation of the method to ballast modeling are discussed.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350104 ◽  
Author(s):  
SACHIN S. GAUTAM ◽  
ROGER A. SAUER

Simulation of dynamic adhesive peeling problems at small scales has attracted little attention so far. These problems are characterized by a highly nonlinear response. Accurate and stable time integration schemes are required for simulation of dynamic peeling problems. In the present work, a composite time integration scheme is proposed for the simulation of dynamic adhesive peeling problems. It is shown through numerical examples that the proposed scheme remains stable and also has some gain in accuracy. The performance of the scheme is compared with two collocation-based schemes, i.e., Newmark scheme and Bathe composite scheme. It is shown that the proposed scheme and Bathe composite scheme perform equally. However, the proposed scheme adds very little to the computational cost of Newmark scheme. Through a numerical simulation of the peeling of a gecko spatula from a rigid substrate it is shown that the proposed scheme and the Bathe composite scheme are able to simulate the complete peeling process for given time step whereas the Newmark scheme diverges. It is also shown that the maximum pull-off force is within the range reported in the literature.


2018 ◽  
Vol 10 (10) ◽  
pp. 1850106 ◽  
Author(s):  
Saeed Mohammadzadeh ◽  
Mehdi Ghassemieh

Sub-stepping time integration methods attempt to march each time step with multiple sub-steps. Generally, for the first sub-step, a single-step method is applied and the following sub-steps are solved using a method that utilizes the data obtained from two or three previous equilibrium points. Despite the robust stability in problems, control of numerical dissipation in sub-stepping schemes is a tough task due to applying different algorithms on a time increment. In order to overcome this insufficiency, a new sub-stepping time integration scheme, which uses two sub-steps in each time increment, is proposed. Newmark and quadratic acceleration methods are applied on the first and second sub-steps, respectively. Both methods utilize constant parameters that enable the control of numerical dissipation in the analysis. For the proposed method, the stability analysis revealed the unconditional stability region for the pertinent parameters. Additionally, the precision investigation disclosed an advantage of the proposed method with the presence of minor period elongation error. Finally, the application of the proposed method is illuminated via several numerical examples. In addition to numerical dissipation control, the proposed method proved to have an outstanding advantage over other methods in solving highly flexible structures more efficiently and more accurately.


2004 ◽  
Vol 01 (03) ◽  
pp. 507-518
Author(s):  
J. C. MANDAL ◽  
J. BALLMANN

An efficient implicit unstructured grid algorithm for solving unsteady inviscid compressible flows over moving body employing an Arbitrary Lagrangian Eulerian formulation is presented. In the present formulation, the time discretization is performed using a second-order accurate 3-point time integration scheme and the upwind-biased space discretization using second-order accurate finite volume formulation with Venkatakrishnan limiter. The face-velocities of the control volumes are computed using Geometric Conservation Laws. The nonlinear system arising from the implicit formulation is solved using an ILU preconditioned Newton–Krylov iteration at every time step. The computed results for two test cases involving harmonically oscillating NACA0012 airfoil are presented in order to demonstrate the efficacy of the present solver.


Author(s):  
Anurag Rajagopal ◽  
Dilip K. Mandal

Abstract Transient simulations play a key role in the analysis and subsequent design of structural components with one or more rotating parts. A framework is proposed to this effect, centered around the finite-element solver OptiStruct, consisting of a time integration scheme built on the Newmark family with an appropriate adaptive time-step control. The process accounts for a computationally efficient handling of nonlinearities that might arise through bearings and casings. This solution is detailed starting from the governing equations for transient rotor dynamics to the nuances of the time marching scheme, and this process is applied to a test case from which conclusions are drawn that might be of interest to practicing engineers. These conclusions include insights into enforced motion, operation at or near critical speeds, rotor damping and contact. This work is aimed at producing a user-friendly and robust tool and process for the practicing engineer to perform complex rotor dynamic analysis.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract This paper describes a finite element formulation to solve for the combined dynamic behavior of Shinkansen (bullet train) vehicles, irregular rails, and bridges. A mechanical model for interactions between a wheel and an irregular rail is discussed. The bridge is modeled by use of various finite elements. An efficient numerical method, based on modal analysis and exact time integration, is described for solving the nonlinear equations of motion of the Shinkansen vehicle and bridge. The convergence of the exact time integration scheme is discussed and compared with a previous numerical time integration scheme. A finite element computer program has been developed to analyze the dynamic response of Shinkansen vehicles operating at high speed over irregular rails and a bridge. Numerical examples are presented to demonstrate the effectiveness and validity of the present approach.


2001 ◽  
Vol 124 (1) ◽  
pp. 186-195 ◽  
Author(s):  
Bo Ruan

A numerical model is developed for the dynamic analysis of gas lubricated spiral groove face seals. Effects of the rotor runout, misalignment, face contact, as well as the stiffness and damping of the secondary seal are considered. Seal axial and angular motions and key parameters such as torque, power loss, and flow rate are obtained by a global time integration scheme, which traces the time history of the dynamic sealing behaviors. The analysis of gas film lubrication, face contact, and the seal dynamics is cast as an inverse problem and the solution is obtained iteratively at each time step. Dynamic tracking motion and key sealing characteristics of a representative spiral groove gas seal undergoing transient operations are presented.


Sign in / Sign up

Export Citation Format

Share Document