The Intellectual Challenge of Morphological Evolution: A Case for Variational Structuralism

Author(s):  
Günter P. Wagner

This chapter explores variational structuralism, whose core idea is that organisms and their parts play causal roles in shaping the patterns of phenotypic evolution. Drawing on the work of pioneers such as Ron Amundson, it discusses the conceptual incompatibilities between two styles of thinking in evolutionary biology: functionalism and structuralism. It proceeds by explaining the meaning of developmental types and structuralist concepts arising from macromolecular studies. It also examines facts and ideas about bodies, Rupert Riedl's theory of the “immitatory epigenotype,” and Neil Shubin and Pere Alberch's developmental interpretation of tetrapod limbs. Finally, it looks at the emergence of molecular structuralism and the enigma of developmental variation. The chapter argues that typology naturally emerged from the facts of evolutionary developmental biology and that it would be seriously problematic to try to avoid it.

2014 ◽  
Vol 76 (8) ◽  
pp. 493-498 ◽  
Author(s):  
Kostas Kampourakis ◽  
Alessandro Minelli

We highlight some important conceptual issues that biologists should take into account when teaching evolutionary biology or communicating it to the public. We first present conclusions from conceptual development research on how particular human intuitions, namely design teleology and psychological essentialism, influence the understanding of evolution. We argue that these two intuitions form important conceptual obstacles to understanding evolution that should be explicitly addressed during instruction and public communication. Given that a major issue in evolution is understanding how very different forms may share common ancestry – antievolutionists have argued that this is inconceivable – we suggest that evolutionary developmental biology (evo-devo), which provides concepts and evidence that large morphological change is possible, could be used to address the intuitions that organisms have fixed essences (psychological essentialism) and that their structure indicates some kind of intentional design (design teleology).


2019 ◽  
Author(s):  
Luke Hayden ◽  
Katerina Lochovska ◽  
Marie Sémon ◽  
Sabrina Renaud ◽  
Marie-Laure Delignette-Muller ◽  
...  

AbstractDevelopmental systems may preferentially produce certain types of variation and, thereby, bias phenotypic evolution. This is a central issue in evolutionary developmental biology, albeit somewhat understudied. Here we focus on the shape of the first upper molar which shows a clear, repeated tendency for anterior elongation at different scales from within mouse populations to between species of the Mus genus. In contrast, the lower molar displays more evolutionary stability. We compared upper and lower molar development of mouse strains representative of this fine variation (DUHi: elongated molars and FVB: short molars). Using a novel quantitative approach to examine small-scale developmental variation, we identified temporal, spatial and functional differences in tooth signaling centers between the two strains, likely due to different tuning of the activation-inhibition mechanisms ruling signaling center patterning. Based on the spatio-temporal dynamics of signaling centers and their lineage tracing, we show an intrinsic difference in the fate of signaling centers between lower and upper jaw of both strains. This can explain why variations in activation-inhibition parameters between strains are turned into anterior elongation in the upper molar only. Finally, although the “elongated” DUHi strain was inbred, first molar elongation was variable in adults, and we found high levels of intra-strain developmental variation in upper molar development. This is consistent with the inherent developmental instability of the upper molar system enabling the morphological variability of the tooth phenotype.In conclusion, we have uncovered developmental properties that underlie the molar’s capacity for repeated phenotypic change, or said differently, that underlie a “line of least resistance”. By focusing on the developmental basis of fine phenotypic variation, our study also challenges some common assumptions and practices in developmental and evolutionary developmental biology.


2018 ◽  
Vol 14 (8) ◽  
pp. 20180101 ◽  
Author(s):  
Jorge Torres-Paz ◽  
Carole Hyacinthe ◽  
Constance Pierre ◽  
Sylvie Rétaux

The Mexican tetra, Astyanax mexicanus , comes in two forms: a classical river-dwelling fish and a blind and depigmented cave-dwelling fish. The two morphotypes are used as models for evolutionary biology, to decipher mechanisms of morphological and behavioural evolution in response to environmental change. Over the past 40 years, insights have been obtained from genetics, developmental biology, physiology and metabolism, neuroscience, genomics, population biology and ecology. Here, we promote the idea that A. mexicanus , as a model, has reached a stage where an integrated approach or a multi-disciplinary method of analysis, whereby a phenomenon is examined from several angles, is a powerful tool that can be applied to understand general evolutionary processes. Mexican cavefish have undergone considerable selective pressure and extreme morphological evolution, an obvious advantage to contribute to our understanding of evolution through comparative analyses and to pinpoint the specific traits that may have helped their ancestors to colonize caves.


2018 ◽  
Vol 5 (10) ◽  
pp. 180604 ◽  
Author(s):  
Shiro Egawa ◽  
Daisuke Saito ◽  
Gembu Abe ◽  
Koji Tamura

Understanding morphological evolution in dinosaurs from a mechanistic viewpoint requires the elucidation of the morphogenesis that gave rise to derived dinosaurian traits, such as the perforated acetabulum. In the current study, we used embryos of extant animals with ancestral- and dinosaur-type acetabula, namely, geckos and turtles (with unperforated acetabulum), and birds (with perforated acetabulum). We performed comparative and experimental analyses, focusing on inter-tissue interaction during embryogenesis, and found that the avian perforated acetabulum develops via a secondary loss of cartilaginous tissue in the acetabular region. This cartilage loss might be mediated by inter-tissue interaction with the hip interzone, a mesenchymal tissue that exists in the embryonic joint structure. Furthermore, the data indicate that avian pelvic anlagen is more susceptible to paracrine molecules, e.g. Wnt ligand, secreted by the hip interzone than ‘reptilian’ anlagen. We hypothesize that during the emergence of dinosaurs, the pelvic anlagen became susceptible to the Wnt ligand, which led to the loss of the cartilaginous tissue and to the perforation in the acetabular region. Thus, the current evolutionary-developmental biology study deepens our understanding of morphological evolution in dinosaurs and provides it with a novel perspective.


2018 ◽  
Vol 6 (14) ◽  
pp. 69
Author(s):  
Mariana Benitez

The fields of agroecology and ecological evolutionary developmental biology  (eco-evo-devo) have been performing somewhat parallel efforts of synthesis. On the one hand, agroecology has incorporated knowledge from different disciplinary sources, among which are of course ecology, agronomy and, in a  less extent, other scientific disciplines. It has also embraced local and traditional agricultural knowledge. On the other hand, during the last decades a large effort has aimed to integrate diverse theories, evidence and tools from ecology, developmental and evolutionary biology in what has been called eco-evo-devo.


Zootaxa ◽  
2007 ◽  
Vol 1668 (1) ◽  
pp. 55-60 ◽  
Author(s):  
ALESSANDRO MINELLI

Evolutionary developmental biology (evo-devo) is a new research area where the traditions of evolutionary biology and developmental biology merge together. As in the past there has been a fruitful two-way exchange between evolutionary biology and taxonomy, and also between developmental biology and taxonomy, now the way is open for two-way exchanges between taxonomy and evolutionary developmental biology.


Author(s):  
Cecilia Zumajo-Cardona ◽  
Natalia Pabón-Mora ◽  
Barbara A Ambrose

Abstract The field of evolutionary developmental biology (evo-devo) can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the APETALA2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR (AP2/ERF) family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatio-temporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved, therefore, changes in the role of euAP2 during development are most likely due to changes in regulatory regions.


Author(s):  
Alan C. Love

Many researchers have argued that evolutionary developmental biology (evo-devo) constitutes a challenge to standard evolutionary theory, requiring the explicit inclusion of developmental processes that generate variation and attention to organismal form (rather than adaptive function). An analysis of these developmental-form challenges indicates that the primary concern is not the inclusion of specific content but the epistemic organization or structure of evolutionary theory. Proponents of developmental-form challenges favor moving their considerations to a more central location in evolutionary theorizing, in part because of a commitment to the value of mechanistic explanation. This chapter argues there are multiple legitimate structures for evolutionary theory, instead of a single, overarching or canonical organization, and different theory presentations can be understood as idealizations that serve different investigative and explanatory goals in evolutionary inquiry.


Sign in / Sign up

Export Citation Format

Share Document