Evolutionary Developmental Biology: the Interaction of Developmental Biology, Evolutionary Biology, Paleontology, and Genomics

2019 ◽  
Vol 53 (11) ◽  
pp. 1117-1133
Author(s):  
N. D. Ozernyuk
Author(s):  
Günter P. Wagner

This chapter explores variational structuralism, whose core idea is that organisms and their parts play causal roles in shaping the patterns of phenotypic evolution. Drawing on the work of pioneers such as Ron Amundson, it discusses the conceptual incompatibilities between two styles of thinking in evolutionary biology: functionalism and structuralism. It proceeds by explaining the meaning of developmental types and structuralist concepts arising from macromolecular studies. It also examines facts and ideas about bodies, Rupert Riedl's theory of the “immitatory epigenotype,” and Neil Shubin and Pere Alberch's developmental interpretation of tetrapod limbs. Finally, it looks at the emergence of molecular structuralism and the enigma of developmental variation. The chapter argues that typology naturally emerged from the facts of evolutionary developmental biology and that it would be seriously problematic to try to avoid it.


2014 ◽  
Vol 76 (8) ◽  
pp. 493-498 ◽  
Author(s):  
Kostas Kampourakis ◽  
Alessandro Minelli

We highlight some important conceptual issues that biologists should take into account when teaching evolutionary biology or communicating it to the public. We first present conclusions from conceptual development research on how particular human intuitions, namely design teleology and psychological essentialism, influence the understanding of evolution. We argue that these two intuitions form important conceptual obstacles to understanding evolution that should be explicitly addressed during instruction and public communication. Given that a major issue in evolution is understanding how very different forms may share common ancestry – antievolutionists have argued that this is inconceivable – we suggest that evolutionary developmental biology (evo-devo), which provides concepts and evidence that large morphological change is possible, could be used to address the intuitions that organisms have fixed essences (psychological essentialism) and that their structure indicates some kind of intentional design (design teleology).


2018 ◽  
Vol 6 (14) ◽  
pp. 69
Author(s):  
Mariana Benitez

The fields of agroecology and ecological evolutionary developmental biology  (eco-evo-devo) have been performing somewhat parallel efforts of synthesis. On the one hand, agroecology has incorporated knowledge from different disciplinary sources, among which are of course ecology, agronomy and, in a  less extent, other scientific disciplines. It has also embraced local and traditional agricultural knowledge. On the other hand, during the last decades a large effort has aimed to integrate diverse theories, evidence and tools from ecology, developmental and evolutionary biology in what has been called eco-evo-devo.


Zootaxa ◽  
2007 ◽  
Vol 1668 (1) ◽  
pp. 55-60 ◽  
Author(s):  
ALESSANDRO MINELLI

Evolutionary developmental biology (evo-devo) is a new research area where the traditions of evolutionary biology and developmental biology merge together. As in the past there has been a fruitful two-way exchange between evolutionary biology and taxonomy, and also between developmental biology and taxonomy, now the way is open for two-way exchanges between taxonomy and evolutionary developmental biology.


Author(s):  
Alan C. Love

Many researchers have argued that evolutionary developmental biology (evo-devo) constitutes a challenge to standard evolutionary theory, requiring the explicit inclusion of developmental processes that generate variation and attention to organismal form (rather than adaptive function). An analysis of these developmental-form challenges indicates that the primary concern is not the inclusion of specific content but the epistemic organization or structure of evolutionary theory. Proponents of developmental-form challenges favor moving their considerations to a more central location in evolutionary theorizing, in part because of a commitment to the value of mechanistic explanation. This chapter argues there are multiple legitimate structures for evolutionary theory, instead of a single, overarching or canonical organization, and different theory presentations can be understood as idealizations that serve different investigative and explanatory goals in evolutionary inquiry.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Angelica Miglioli ◽  
Laura Canesi ◽  
Isa D. L. Gomes ◽  
Michael Schubert ◽  
Rémi Dumollard

Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.


2021 ◽  
Author(s):  
Jerzy Dzik

An instructive introduction to the theory of evolution and its applications in biology, physics, chemistry, geology and humanities. The author shows that evolution is a physical process, occurring in geological time dimension, describes how the Darwin’s theory of natural selection works in immunology, neurobiology, sociology as well as in certain aspects of culture and political institutions. He also shows the effects achieved through the action of selection in different areas of biological and social life. He discusses such problems as: the ambiguity of the term “theory of evolution”, the falsifiability of evolutionary hypotheses, connection between evolution and thermodynamics, the concept of reductionism, methodological background of phylogenetics, cladistics, evolutionary developmental biology and homeotic genes, as well as the cumulative nature of social and cultural evolution.


Sign in / Sign up

Export Citation Format

Share Document