Facsimile : A p-adic Simpson correspondence

Author(s):  
Gerd Faltings

This chapter presents the facsimile of Gerd Faltings' article entitled “A p-adic Simpson Correspondence,” reprinted from Advances in Mathematics 198(2), 2005. In this article, an equivalence between the category of Higgs bundles and that of “generalized representations” of the étale fundamental group is constructed for curves over a p-adic field. The definition of “generalized representations” uses p-adic Hodge theory and almost étale coverings, and it includes usual representations which form a full subcategory. The equivalence depends on the choice of an exponential function for the multiplicative group. The method used in the proofs is the theory of almost étale extensions. A nonabelian Hodge–Tate theory is also developed.

Author(s):  
Ahmed Abbes ◽  
Michel Gros ◽  
Takeshi Tsuji

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches. It mainly focuses on generalized representations of the fundamental group that are p-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The book shows the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the book contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored.


2015 ◽  
Vol 30 (20) ◽  
pp. 1550115 ◽  
Author(s):  
D. Shukla ◽  
T. Bhanja ◽  
R. P. Malik

We consider the toy model of a rigid rotor as an example of the Hodge theory within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism and show that the internal symmetries of this theory lead to the derivation of canonical brackets amongst the creation and annihilation operators of the dynamical variables where the definition of the canonical conjugate momenta is not required. We invoke only the spin-statistics theorem, normal ordering and basic concepts of continuous symmetries (and their generators) to derive the canonical brackets for the model of a one [Formula: see text]-dimensional (1D) rigid rotor without using the definition of the canonical conjugate momenta anywhere. Our present method of derivation of the basic brackets is conjectured to be true for a class of theories that provide a set of tractable physical examples for the Hodge theory.


2020 ◽  
Vol 372 ◽  
pp. 107305
Author(s):  
Olivier Biquard ◽  
Oscar García-Prada ◽  
Ignasi Mundet i Riera

1937 ◽  
Vol 44 (5) ◽  
pp. 312
Author(s):  
J. K. L. MacDonald ◽  
F. R. Sharpe

2019 ◽  
Vol 19 (3) ◽  
pp. 381-388
Author(s):  
Indranil Biswas ◽  
Ugo Bruzzo ◽  
Sudarshan Gurjar

Abstract Relying on a notion of “numerical effectiveness” for Higgs bundles, we show that the category of “numerically flat” Higgs vector bundles on a smooth projective variety X is a Tannakian category. We introduce the associated group scheme, that we call the “Higgs fundamental group scheme of X,” and show that its properties are related to a conjecture about the vanishing of the Chern classes of numerically flat Higgs vector bundles.


1937 ◽  
Vol 44 (5) ◽  
pp. 312-315
Author(s):  
J. K. L. MacDonald ◽  
F. R. Sharpe

Author(s):  
Takeshi Tsuji

This chapter describes the cohomology of Higgs isocrystals, which are introduced to replace the notion of Higgs bundles. The link between these two notions uses Higgs envelopes and calls to mind the link between classical crystals and modules with integrable connections. After discussing Higgs isocrystals and Higgs crystals, cohomology of Higgs isocrystals, and representations of the fundamental group, the chapter presents the main result: the construction of a fully faithful functor from the category of Higgs (iso)crystals satisfying an overconvergence condition to that of small generalized representations. It also proves the compatibility of this functor with the natural cohomologies and concludes by comparing the cohomology of Higgs isocrystals with Faltings cohomology.


Author(s):  
Brian Collier

The goal of this chapter is to examine the various ways in which Fuchsian representations of the fundamental group of a closed surface of genus g into PSL(2, R) and their associated Higgs bundles generalize to the higher-rank groups PSL(n, R), PSp(2n, R), SO0(2, n), SO0(n,n+1) and PU(n, n). For the SO0(n,n+1)-character variety, it parameterises n(2g−2) new connected components as the total spaces of vector bundles over appropriate symmetric powers of the surface, and shows how these components deform in the character variety. This generalizes results of Hitchin for PSL(2, R).


2007 ◽  
Vol 09 (04) ◽  
pp. 437-446 ◽  
Author(s):  
UGO BRUZZO ◽  
BEATRIZ GRAÑA OTERO

After providing a suitable definition of numerical effectiveness for Higgs bundles, and a related notion of numerical flatness, in this paper we prove, together with some side results, that all Chern classes of a Higgs-numerically flat Higgs bundle vanish, and that a Higgs bundle is Higgs-numerically flat if and only if it is has a filtration whose quotients are flat stable Higgs bundles. We also study the relation between these numerical properties of Higgs bundles and (semi)stability.


Sign in / Sign up

Export Citation Format

Share Document