scholarly journals Definition of Momentum and Mass as an Invariant Vector of the New Fundamental Group of Transformations in Special Relativity and Quantum Mechanics

Author(s):  
Takashi Shibata
2019 ◽  
Author(s):  
Vitaly Kuyukov

Quantum tunneling of noncommutative geometry gives the definition of time in the form of holography, that is, in the form of a closed surface integral. Ultimately, the holography of time shows the dualism between quantum mechanics and the general theory of relativity.


2017 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Eyal Brodet

In this paper we reconsider the conventional expressions given by special relativity to the energy and momentum of a particle. In the current framework, the particle's energy and momentum are computed using the particle's rest mass, M and rest mass time, t_m=h/M c^2  where t_m has the same time unit as conventionally used for the light velocity c. Therefore it is currently assumed that this definition of time describes the total kinetic and mass energy of a particle as given by special relativity. In this paper we will reexamine the above assumption and suggest describing the particle's energy as a function of its own particular decay time and not with respect to its rest mass time unit. Moreover we will argue that this rest mass time unit currently used is in fact the minimum time unit defined for a particle and that the particle may have more energy stored with in it. Experimental ways to search for this extra energy stored in particles such as electrons and photons are presented.


2020 ◽  
Author(s):  
Shuming Wen

Abstract The theoretical calculation of quantum mechanics has been accurately verified by experiments, but Copenhagen interpretation with probability is still controversial. To find the source of the probability, we revised the definition of the energy quantum and reconstructed the wave function of the physical particle. Here, we found that the energy quantum ê is 6.62606896 ×10-34J instead of hν as proposed by Planck. Additionally, the value of the quality quantum ô is 7.372496 × 10-51 kg. This discontinuity of energy leads to a periodic non-uniform spatial distribution of the particles that transmit energy. A quantum objective system (QOS) consists of many physical particles whose wave function is the superposition of the wave functions of all physical particles. The probability of quantum mechanics originates from the distribution rate of the particles in a state in the QOS per unit volume at time t and near position r. Based on the revision of the energy quantum assumption and the origin of the probability, we proposed new certainty and uncertainty relationships, explained the physical mechanism of wave-function collapse and the quantum tunnelling effect, derived the quantum theoretical expression of double-slit and single-slit experiments.


Author(s):  
Salim Yasmineh

All the arguments of a wavefunction are defined at the same instant implying a notion of simultaneity. In a somewhat related matter, certain phenomena in quantum mechanics seem to have non-local causal relations. Both concepts are in contradiction with special relativity. We propose to define the wavefunction with respect to the invariant proper time of special relativity instead of standard time. Moreover, we shall adopt the original idea of Schrodinger suggesting that the wavefunction represents an ontological cloud-like object that we shall call ‘individual fabric’ that has a finite density amplitude vanishing at infinity. Consequently, measurement can be assimilated to a confining potential that triggers an inherent non-local mechanism within the individual fabric. It is formalised by multiplying the wavefunction with a localising gaussian as in the GRW theory but in a deterministic manner.


Author(s):  
Alireza Jamali

It is known since Madelung that the Schrödinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schrödinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document