scholarly journals How to interpret complete blood count: using the possibilities of modern hematology analyzers

2016 ◽  
Vol 1 (1) ◽  
pp. 98-108
Author(s):  
V.Yu. Pavlova ◽  
2018 ◽  
Vol 10 (01) ◽  
pp. 085-088
Author(s):  
Chidambharam Choccalingam

Abstract PURPOSE: Automated hematology analyzers yield a complete hematological profile including a complete blood count and a differential white blood cell count. The differential count is based on analyses of three parameters, namely, volume, conductance, and scatter (VCS). We aimed to evaluate the VCS parameters, histograms, and scatterplots of neoplastic and nonneoplastic lymphocytes. MATERIAL AND METHODS: Patients were grouped into four categories, namely, acute lymphoblastic leukemia (ALL), chronic systemic disorders, chronic lymphocytic leukemia (CLL), and acute viral disease. Lymphocytes from all four groups were compared with lymphocytes from normal participants. RESULTS AND CONCLUSIONS: The histogram for acute viral disease showed a trough at T1, which was slightly obliterated, and the F1 curve mildly extended to the right. The T1 for ALL was replaced with a peak at >40% of the preset limit. The F1 peak was shifted to left for CLL. The scatterplot for viral disease showed lymphocytes extending to the variant lymphocyte window. The lymphocytes of ALL extended to the blast window, with both increase in volume and mild increase in scatter. The lymphocytes in CLL were smaller and located below the normal lymphocyte region. Mean lymphocyte volume was significantly increased in ALL and was significantly decreased in CLL. Mean lymphocyte conductance was significantly increased in CLL and significantly decreased in both acute viral disease and ALL. Mean lymphocyte scatter was significantly decreased in acute viral disease and significantly increased in ALL.


2020 ◽  
Vol 9 (3) ◽  
pp. 808 ◽  
Author(s):  
Véronique Baccini ◽  
Franck Geneviève ◽  
Hugues Jacqmin ◽  
Bernard Chatelain ◽  
Sandrine Girard ◽  
...  

Despite the ongoing development of automated hematology analyzers to optimize complete blood count results, platelet count still suffers from pre-analytical or analytical pitfalls, including EDTA-induced pseudothrombocytopenia. Although most of these interferences are widely known, laboratory practices remain highly heterogeneous. In order to harmonize and standardize cellular hematology practices, the French-speaking Cellular Hematology Group (GFHC) wants to focus on interferences that could affect the platelet count and to detail the verification steps with minimal recommendations, taking into account the different technologies employed nowadays. The conclusions of the GFHC presented here met with a "strong professional agreement" and are explained with their rationale to define the course of actions, in case thrombocytopenia or thrombocytosis is detected. They are proposed as minimum recommendations to be used by each specialist in laboratory medicine who remains free to use more restrictive guidelines based on the patient’s condition.


Author(s):  
Johannes J. M. L. Hoffmann

AbstractBasophils (basophilic granulocytes) are the least abundant cells in blood. Nowadays, basophils are included in the complete blood count performed by hematology analyzers and therefore reported in practically all patients in whom hematologic investigations are requested. However, hematology analyzers are not reliable enough to report clinically useful results. This is due to a combination of very high analytical imprecision and poor specificity, because the chemical and physical methods used for basophil counting in hematology analyzers are ill-defined and thus basophils are not well recognized by the analyzers. As a result, false basophil counts are quite common. In view of increasing analytical performance demands, hematology laboratories should stop reporting basophil counts produced by hematology analyzers. Suggestions for alternative pathways are presented for those situations where basophils are of clinical relevance.


2021 ◽  
Author(s):  
Neta Bachar ◽  
Dana Benbassat ◽  
David Brailovsky ◽  
Yochay Eshel ◽  
Dan Glück ◽  
...  

Hematology analyzers capable of performing complete blood count (CBC) have lagged in their prevalence at the point-of-care. Sight OLO® (Sight Diagnostics, Israel) is a novel hematological platform which provides a 19 parameter, five-part differential CBC, and is designed to address the limitations in current point-of-care hematology analyzers using recent advances in artificial intelligence (AI) and computer vision. Accuracy, repeatability, and flagging capabilities of OLO were compared with the Sysmex XN-Series System (Sysmex, Japan). Matrix studies compared performance using venous, capillary and direct-from-finger-prick blood samples. Regression analysis shows strong concordance between OLO and the Sysmex XN, demonstrating that OLO performs with high accuracy for all CBC parameters. High repeatability and reproducibility were demonstrated for most of the testing parameters. The analytical performance of the OLO hematology analyzer was validated in a multicenter clinical laboratory setting, demonstrating its accuracy and comparability to clinical laboratory-based hematology analyzers. Furthermore, the study demonstrated the validity of CBC analysis of samples collected directly from fingerpricks.One Sentence SummaryWe present a novel diagnostic platform based on artificial intelligence-assisted image analysis that is capable of performing rapid complete blood count from venous, capillary, and finger-prick samples in near-patient settings.


2021 ◽  
pp. 1098612X2110137
Author(s):  
James R Templeman ◽  
Kylie Hogan ◽  
Alexandra Blanchard ◽  
Christopher PF Marinangeli ◽  
Alexandra Camara ◽  
...  

Objectives The objective of this study was to verify the safety of policosanol supplementation for domestic cats. The effects of raw and encapsulated policosanol were compared with positive (L-carnitine) and negative (no supplementation) controls on outcomes of complete blood count, serum biochemistry, energy expenditure, respiratory quotient and physical activity in healthy young adult cats. Methods The study was a replicated 4 × 4 complete Latin square design. Eight cats (four castrated males, four spayed females; mean age 3.0 ± 1.0 years; mean weight 4.36 ± 1.08 kg; mean body condition score 5.4 ± 1.4) were blocked by sex and body weight then randomized to treatment groups: raw policosanol (10 mg/kg body weight), encapsulated policosanol (50 mg/kg body weight), L-carnitine (200 mg/kg body weight) or no supplementation. Treatments were supplemented to a basal diet for 28 days with a 1-week washout between periods. Food was distributed equally between two offerings to ensure complete supplement consumption (first offering) and measure consumption time (second offering). Blood collection (lipid profile, complete blood count, serum biochemistry) and indirect calorimetry (energy expenditure, respiratory quotient) were conducted at days 0, 14 and 28 of each period. Activity monitors were worn 7 days prior to indirect calorimetry and blood collection. Data were analyzed using a repeated measures mixed model (SAS, v.9.4). Results Food intake and body weight were similar among treatments. There was no effect of treatment on lipid profile, serum biochemistry, activity, energy expenditure or respiratory quotient ( P >0.05); however, time to consume a second meal was greatest in cats fed raw policosanol ( P <0.05). Conclusions and relevance These data suggest that policosanol is safe for feline consumption. Further studies with cats demonstrating cardiometabolic risk factors are warranted to confirm whether policosanol therapy is an efficacious treatment for hyperlipidemia and obesity.


Sign in / Sign up

Export Citation Format

Share Document