scholarly journals NUMERICAL MODELING OF HYDRODYNAMIC PROCESSES IN THE TAGANROG BAY OF THE AZOV SEA

2020 ◽  
Vol 1 (2) ◽  
pp. 101-113
Author(s):  
Alexander Chistyakov ◽  
◽  
Alena Filina ◽  
Vladimir Litvinov ◽  
◽  
...  

This paper covers the creation and numerical realization of proposed mathematical model of hydrodynamical processes in shallow water based on contemporary information technology and new computational methods that allow improve the prediction accuracy of the environmental situation using the example of the Taganrog Bay in the Azov Sea basin. The proposed mathematical hydrodynamics model takes into account surges, dynamically reconstructed geometry, elevation of the level and coastline, wind currents and friction against the bottom, Coriolis force, turbulent exchange, evaporation, river flow, deviation of the pressure field value from the hydrostatic approximation, the salinity and temperature impact. The discretization of the mathematical model of hydrodynamics was performed using the splitting schemes for physical processes. The constructed discrete analogs possess the properties of conservatism, stability, and convergence. Numerical algorithms are also proposed for solving the arising SLAEs that improve the accuracy of predictive modeling. The practical significance of this research is software implementation of the developed model and the determination of limits and prospects of its application. The experimental software development was based on a graphics accelerator for mathematical simulation the possible scenarios of shallow water ecosystems in consideration the environmental factors influence. The decomposition methods taking into account the CUDA architecture specifications were used at parallel implementation for computationally labors diffusion-convection problems.

2018 ◽  
Vol 33 (3) ◽  
pp. 173-185 ◽  
Author(s):  
Dmitry S. Saburin ◽  
Tatiana G. Elizarova

Abstract A new model for calculation of circulation in shallow water basins is created based on the shallow water equations taking into account the Coriolis force and quadratic friction on the bottom. Wind effects are taken into account as forcing. The main feature of the model is a new numerical method based on regularized shallow water equations allowing one to construct the simple and sufficiently accurate numerical algorithms possessing a number of advantages over existing methods. The paper provides a detailed description of all construction steps of the model. The developed model was implemented for the water area of the Azov Sea. The paper presents the modelling of extreme surges in March 2013 and September 2014, the results of calculations are compared with observation data of hydrometeorological stations in Taganrog and Yeysk.


2019 ◽  
Vol 97 ◽  
pp. 05023 ◽  
Author(s):  
Daler Sharipov ◽  
Sharofiddin Aynakulov ◽  
Otabek Khafizov

The paper deals with the development of mathematical model and numerical algorithms for solving the problem of transfer and diffusion of aerosol emissions in the atmospheric boundary layer. The model takes into account several significant parameters such as terrain relief, characteristics of underlying surface and weather-climatic factors. A series of numerical experiments were conducted based on the given model. The obtained results presented here show how these factors affect aerosol emissions spread in the atmosphere.


2020 ◽  
Vol 1 (4) ◽  
pp. 46-60
Author(s):  
B.B. Kositsyn ◽  

Introduction. The use of the method of full-scale-mathematical modeling in “real time” opens up wide opportunities associated with the analysis of the modes of operation of the “man – vehicle – environment” system, as well as the study of the loading of units and assemblies of vehicles. The existing research complexes of full-scale mathematical modeling are suitable for obtaining most of the indicators usually determined by full-scale tests. The difference lies in the ability to fully control the course of virtual testing, recording any parameters of the vehicle movement, taking into account the “human factor”, as well as complete safety of the experiment. Purpose of research. The purpose of this work is to create a mathematical model of the dynam-ics of a wheeled vehicle, suitable for use in such a complex of full-scale mathematical modeling and assessment of the load of transmission units in conditions close to real operation. Methodology and methods. The proposed model is based on the existing model of the dynamics of a wheeled vehicle developed at Bauman Moscow State Technical University. Within the framework of the model, the dynamics of a vehicle is described as a plane motion of a rigid body in a horizontal plane. The principle of possible displacements is applied to determine the normal reac-tions of the bearing surface. The interaction of the wheel with the ground in the plane of the support base is described using an approach based on the “friction ellipse” concept. To enable the driver and operator of the full-scale mathematical modeling complex to drive a virtual vehicle in “real time” mode, the mathematical model is supplemented with a control system that communicates between the control parameter set by the driver by pressing the accelerator and brake pedals and the control actions of the vehicle's transmission units, such as: an electric machine, an internal combustion en-gine, a hydrodynamic retarder and a brake system. The article presents a block diagram of the de-veloped control algorithm, as well as approbation of the system's operation in a complex of full-scale mathematical modeling. Results and scientific novelty. A mathematical model of the dynamics of a wheeled vehicle was developed. It opens up wide possibilities for studying the modes of operation of the “driver-vehicle-environment” system in “real time”, using a complex of full-scale mathematical modeling. Practical significance. A mathematical model of the dynamics of a wheeled vehicle was devel-oped. It is supplemented with an algorithm for the distribution of traction / braking torques between the transmission units, which provide a connection between the driver's pressing on the accelerator / brake pedal and the control parameters of each of the units.


Author(s):  
R. Lunderstädt ◽  
K. Fiedler

In the paper to be presented diagnostic procedures on the basis of a gas path analysis are applied on a two-shaft jet engine. Starting from the mathematical model of the engine a filter-algorithm is used which delivers from actual measurement data the state of the engine for different working conditions. The procedure is proven for some examples and discussed in regard of its practical significance.


Author(s):  
Ombaki Richard ◽  
Kerongo Joash ◽  
Okwoyo M. James

Pollution of sub-surface water reservoirs mainly rivers and streams through contaminated water point sources (CWPS) was studied. The objective was to formulate a discrete time delay mathematical model which describes the dynamics of reservoir pollution using mixing-problem processes that involve single species contaminants such as nitrates, phosphorous and detergents. The concentration  of pollutants was expressed as a function of the inflow and outflow rates using the principle for the conservation of mass. Systems of ODEs generated from principles of mixing problems were refined into a system of DDEs so that the concentration of pollutant leaving the reservoir at time would be determined at some earlier instant, for the delay. The formulated model is a mathematical discrete time delay model which would be used to describe the dynamics of sub-surface water reservoir pollution. The results from the validation of the model were analyzed   to determine how time delays in the mixing processes affect the rate of particle movement in water reservoirs.


Sign in / Sign up

Export Citation Format

Share Document