MAC Protocol Implementation & Design for Wireless Distributed Computing

Author(s):  
Ashish Pandey ◽  
◽  
Sameer Awasthi ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jamila Bhar

IEEE 802.15.4 is an important standard for Low Rate Wireless Personal Area Network (LRWPAN). The IEEE 802.15.4 presents a flexible MAC protocol that provides good efficiency for data transmission by adapting its parameters according to characteristics of different applications. In this research work, some restrictions of this standard are explained and an improvement of traffic efficiency by optimizing MAC layer is proposed. Implementation details for several blocks of communication system are carefully modeled. The protocol implementation is done using VHDL language. The analysis gives a full understanding of the behavior of the MAC protocol with regard to backoff delay, data loss probability, congestion probability, slot effectiveness, and traffic distribution for terminals. Two ideas are proposed and tested to improve efficiency of CSMA/CA mechanism for IEEE 802.15.4 MAC Layer. Primarily, we dynamically adjust the backoff exponent (BE) according to queue level of each node. Secondly, we vary the number of consecutive clear channel assessment (CCA) for packet transmission. We demonstrate also that slot compensation provided by the enhanced MAC protocol can greatly avoid unused slots. The results show the significant improvements expected by our approach among the IEEE 802.15.4 MAC standards. Synthesis results show also hardware performances of our proposed architecture.


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document