scholarly journals Effect of anionic salts in concentrate mixture on some blood and urine minerals, acid-base balance and feed intake of dry pregnant cows on grass silage based feeding with high calcium intake

1998 ◽  
Vol 7 (5-6) ◽  
pp. 545-552 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
L. SYRJÄLÄ-QVIST

The objective was to study the effects of anionic salts in a concentrate mixture on some blood and urine minerals, acid-base balance and intake of Ayrshire cows fed a grass silage based diet. Eighteen nonlactating, pregnant Ayrshire cows were divided randomly into two groups according to their expected calving date. Dietary cation-anion balance (DCAB), calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)] of the two diets was +410 mEq/kg of dietary dry matter (DM) in the high DCAB group and +81 mEq/kg of the dietary DM in the low DCAB group, respectively. The DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (0.8 kg DM) and a concentrate mixture (1.7 kg DM) until calving. Both diets were supplemented with 100 g CaCO3 to achieve a high Ca intake (82 g Ca/d). Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. Current data indicated that it may be difficult to formulate a diet with a negative DCAB, if the K content of grass silage is over 30 g/kg DM. As a result, no increase in blood Ca2+ and a relatively high urinary pH were observed. Furthermore, it may advantageous to increase Mg intakes above current Finnish recommendations when dietary Ca concentrations are high, since 28% of experimental cows experienced hypomagnaesemia at parturition.;


2003 ◽  
Vol 12 (2) ◽  
pp. 83-93 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
S. PYÖRÄLÄ

The objective of this study was to determine the effect of an anionic diet on mineral metabolism, acid-base status and udder oedema of dairy cows fed grass silage based diets during the dry period. Eighteen pregnant, non-lactating Friesian cows were divided randomly into two groups according to their expected calving date. Dietary cation-anion balance (DCAB), calculated as mill equivalents [(Na + + K + ) - (Cl - + S 2- )], for high DCAB (control) and low DCAB treatments were +254 and -41 mEq kg -1 dry matter (DM), respectively. Anionic salts were ammonium chloride (NH 4 Cl), magnesium chloride (MgCl 2 ) and magnesium sulphate (MgSO 4 ). Cows received grass silage (5.2 kg DM), hay (0.9 kg DM) and a concentrate mixture (2.7 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, 1 day and 1 week after calving. Udder oedema was evaluated by a quantitative and a subjective method. Acidification resulted in a marked decrease in urinary pH, increased urinary Ca excretion and a change in blood acidbase balance. Blood Ca 2+ and plasma Ca tot concentrations were more stable at parturition for the anionic group, although such differences were not statistically significant. Anionic salts (DCAB -41 mEq kg -1 DM) did not cause udder oedema in experimental cows.;



1998 ◽  
Vol 7 (5-6) ◽  
pp. 535-543 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
S. PYÖRÄLÄ

Twenty Friesian cows were randomly assigned to one of four prepartum diets in a 2 x 2 factorially designed experiment to determine the effect of anionic salts contained in a concentrate mixture and magnesium (Mg) intake on some blood and urine minerals in cows fed a grass silage based diet. Four diets provided either 16 g or 33 g total dietary Mg/day, and had either a low or high cation-anion difference. Dietary cation-anion balance (DCAB) of the diets, calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)], was +31 mEq/kg dry matter (DM) in the low DCAB group and +340 mEq/kg DM in the high DCAB group. DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (1.0 kg DM) and concentrate mixture (1.5 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. Cows fed the low DCAB diet had a lower urinary pH (P



1998 ◽  
Vol 7 (5-6) ◽  
pp. 523-533 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
S. PYÖRÄLÄ

Twelve Ayrshire and eight Friesian cows were randomly assigned to one of four prepartum diets in a 2 x 2 factorially designed experiment to determine the effect of anionic diet and calcium (Ca) intake on Ca metabolism, acid-base status and feed intake of grass silage based diets during the dry period. Four diets provided either 34 g or 74 g total dietary Ca/day, and were either anionic or cationic. Dietary cation-anion balance (DCAB), calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)], was -247 mEq/kg dry matter (DM) in the low DCAB group and +34 mEq/kg DM in the high DCAB group. DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (0.9 kg DM) and concentrate mixture (1.6 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. The results indicate that the reduction of cation-anion balance induced mild metabolic acidosis and increased the ability of the cow to maintain blood Ca concentration. However, DCAB should be higher since urinary pH decreased markedly (< 6) and so remarkable changes in some blood electrolyte concentrations were noticed.;





2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Dóris Pereira Halfen ◽  
Alexandre de Mello Kessler ◽  
Luciano Trevizan ◽  
Juliana Toloi Jeremias ◽  
Thiago Henrique Annibale Vendramini ◽  
...  

ABSTRACT: Urolithiasis is a common disorder in the veterinary clinic and is considered as one of the most frequently cause of morbidity. This disorder is closely associated with urinary pH and nutrition plays a key role in the control of this disease, because through dietary manipulation it is possible to modify the urinary pH. Sulfur is considered macroelement with a strong influence on the acid-base status and may be crucial to control urinary pH in cats. The purpose of this study was to evaluate the effects of addition of different sources of sulfur (S) in the diet of cats on the urinary parameters and acid-base balance. Forty-two healthy adult cats were divided into 3 groups, and each group of 14 cats received 7 diets in a complete randomized block design. Calcium sulfate (CaSO4), DL-methionine (DLM) and methionine hydroxy analog (MHA) were added to a control diet in two levels (1.28g S/kg and 2.56g S/kg) to formulate 6 other experimental diets. The acid-base balance was evaluated by hemogasometry in samples of venous blood. The DLM at the highest level and MHA differed of the control diet in relation to urinary pH (P<0.05). Calcium sulfate; although, not differentiated from the control diet, has been shown to alter urinary pH despite its zero electrolyte balance. Apparently, the alkalizing effect of calcium was not sufficient to avoid sulfate acidification of the urine. Treatments showed no alteration of the acid-base balance of the animals and no affect the consumption of the diets.



1961 ◽  
Vol 201 (6) ◽  
pp. 980-986 ◽  
Author(s):  
Hisato Yoshimura ◽  
Masateru Yata ◽  
Minoru Yuasa ◽  
Robert A. Wolbach

Renal mechanisms for the maintenance of acid-base balance were studied in the normal bullfrog, during metabolic and respiratory acidosis, and after carbonic anhydrase inhibition. Following intravenous administration of 0.3–12 mmole HCl/ kg, as 0.1 n HCl, urinary pH (initially pH 6.3–7.7) did not change significantly. However, urinary ammonia excretion increased more than twofold, and within 3–5 days the cumulative increase was equivalent to the acid load given. Despite the increased ammonia excretion, chloride excretion did not increase after acid loading. In both normal and acidotic bullfrogs ammonia excretion was correlated with an increase in urinary pH. Respiratory acidosis in the small frog, Rana limnocharis, produced by exposure to 6.4% CO2 in air, induced neither urinary acidification nor increased ammonia excretion; both urinary sodium and bicarbonate excretion increased. When renal carbonic anhydrase was inhibited by acetazoleamide injection, urine flow, sodium excretion, and bicarbonate excretion increased markedly, urinary pH increased slightly, and urinary ammonia excretion remained unchanged. These renal responses to acidosis are compared with those of the acidotic dog.



1965 ◽  
Vol 58 (11P2) ◽  
pp. 961-963 ◽  
Author(s):  
M D Milne

Changes in acid-base balance have a profound influence on many aspects of the action of drugs. This is illustrated by data on the absorption of drugs from the stomach and intestine, in changes in distribution of drugs between plasma and cells, and the effect of change in urinary pH. As a general principle, these changes in the pharmacology of weak acids and bases are governed by physicochemical principles, which influence the proportion of the ionized and unionized components according to the pH of the medium and also to the peculiar property of biological membranes which allow the free passage of the lipoid-soluble unionized component and impede transfer of the water-soluble ionized fraction. Lipoid-soluble weak acids are excreted at higher clearances in alkaline urine, and conversely weak bases in acid urine. This is shown to be of practical importance in the treatment of poisoning, in the diagnosis of addiction to drugs and in studies of drug metabolism. In general, the excretion of natural metabolites is less likely to be influenced by urinary pH, as these substances are usually less lipoid-soluble than many widely used drugs. pH-dependent excretion is, however, of practical importance in relation to the urinary content of many indolic metabolites and also in the excretion of pigments derived from the degradation of hæmoglobin. Urobilinogen excretion is certainly pH-dependent, a higher clearance rate occurring in alkaline urine. However, work is necessary to decide whether some of the porphyrins also show this important physiological property.



2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Lorena Chaves Monteiro ◽  
Rinaldo Batista Viana ◽  
Raffaella Bertoni Cavalcanti Teixeira ◽  
Marcel Ferreira Bastos Avanza ◽  
Pedro Ancelmo Nunes Ermita ◽  
...  

ABSTRACT: The effects of acetate as an alkalinizing agent in maintenance enteral electrolyte solutions administered by nasogastric route in a continuous flow have not been previously described in weaned foals. This is the second part of a study that evaluated the effects of two electrolyte solutions of enteral therapy fluid in weaned foals. In this part, will be considered the effects of enteral electrolyte solutions containing different acetate concentrations on acid-base balance, blood glucose, lactate and urine pH of weaned foals. This was a controlled trial in a cross-over design performed in six foals with a mean age of 7.3 ± 1.4 months. After 12 h of water and food deprivation, each animal received the following two treatments by nasogastric route in a continuous flow of 15 ml/kg/h during 12 h: HighAcetate (acetate 52 mmol/l) and LowAcetate (acetate 22.6 mmol/l). The HighAcetate treatment was effective in generating a slight increase in blood pH, blood bicarbonate concentration, base excess and urinary pH.



2018 ◽  
Vol 38 (11) ◽  
pp. 2133-2138
Author(s):  
Dóris P. Halfen ◽  
Alexandre M. Kessler ◽  
Luciano Trevizan ◽  
Thiago H.A. Vendramini ◽  
João P.F. Santos ◽  
...  

ABSTRACT: Calcium is a macroelement that is part of the mineral composition of the diet of companion animals, and is considered a cation of strong alkalizing power, increasing urinary pH. Calcium salts have different solubilities and depending on the anion to which calcium is associated with, it can be more or less absorbed, modifying the pH of the urine. The aim of this study was to evaluate the efficiency of calcium sources on alkalinization of urinary pH, as well as excretion of urinary electrolytes and acid-base balance of adult cats. An extruded diet for cats was selected, and had 160mEq/kg of calcium from the sources of either calcium carbonate (CaCO3) or calcium gluconate (C12H22CaO14) added. In the control treatment there was no addition of calcium sources, resulting in three treatments. Nine adult cats were used, mixed breed, in two experimental periods, with six replicates per treatment. Animal average age was 4±1.3 years old and average weight was 3.96±0.71kg. The cats remained in metabolic cages for an adaptation period of seven days, followed by six days of urine total collection, with volume, density, pH and calcium concentration (g/d) measurements. The acid-base balance was studied by blood gas analysis of venous blood. The two sources of calcium alkalinized the urine (P<0.001). However, calcium gluconate had less alkalinization power compared to the calcium carbonate (P<0.05). Urinary calcium was not affected by treatments, and represented less than 0.5% of calcium intake. The experiment showed that calcium, although an alkaline cation and considered strong influencer of the EB of the diet, cannot be evaluated individually, because depending on its associated anion it may have greater or lesser influence on cats urine pH.



Sign in / Sign up

Export Citation Format

Share Document