scholarly journals Effect of anionic salts in concentrate mixture and magnesium intake on some blood and urine minerals and acid-base balance of dry pregnant cows on grass silage based feeding

1998 ◽  
Vol 7 (5-6) ◽  
pp. 535-543 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
S. PYÖRÄLÄ

Twenty Friesian cows were randomly assigned to one of four prepartum diets in a 2 x 2 factorially designed experiment to determine the effect of anionic salts contained in a concentrate mixture and magnesium (Mg) intake on some blood and urine minerals in cows fed a grass silage based diet. Four diets provided either 16 g or 33 g total dietary Mg/day, and had either a low or high cation-anion difference. Dietary cation-anion balance (DCAB) of the diets, calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)], was +31 mEq/kg dry matter (DM) in the low DCAB group and +340 mEq/kg DM in the high DCAB group. DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (1.0 kg DM) and concentrate mixture (1.5 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. Cows fed the low DCAB diet had a lower urinary pH (P


1998 ◽  
Vol 7 (5-6) ◽  
pp. 545-552 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
L. SYRJÄLÄ-QVIST

The objective was to study the effects of anionic salts in a concentrate mixture on some blood and urine minerals, acid-base balance and intake of Ayrshire cows fed a grass silage based diet. Eighteen nonlactating, pregnant Ayrshire cows were divided randomly into two groups according to their expected calving date. Dietary cation-anion balance (DCAB), calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)] of the two diets was +410 mEq/kg of dietary dry matter (DM) in the high DCAB group and +81 mEq/kg of the dietary DM in the low DCAB group, respectively. The DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (0.8 kg DM) and a concentrate mixture (1.7 kg DM) until calving. Both diets were supplemented with 100 g CaCO3 to achieve a high Ca intake (82 g Ca/d). Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. Current data indicated that it may be difficult to formulate a diet with a negative DCAB, if the K content of grass silage is over 30 g/kg DM. As a result, no increase in blood Ca2+ and a relatively high urinary pH were observed. Furthermore, it may advantageous to increase Mg intakes above current Finnish recommendations when dietary Ca concentrations are high, since 28% of experimental cows experienced hypomagnaesemia at parturition.;



2003 ◽  
Vol 12 (2) ◽  
pp. 83-93 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
S. PYÖRÄLÄ

The objective of this study was to determine the effect of an anionic diet on mineral metabolism, acid-base status and udder oedema of dairy cows fed grass silage based diets during the dry period. Eighteen pregnant, non-lactating Friesian cows were divided randomly into two groups according to their expected calving date. Dietary cation-anion balance (DCAB), calculated as mill equivalents [(Na + + K + ) - (Cl - + S 2- )], for high DCAB (control) and low DCAB treatments were +254 and -41 mEq kg -1 dry matter (DM), respectively. Anionic salts were ammonium chloride (NH 4 Cl), magnesium chloride (MgCl 2 ) and magnesium sulphate (MgSO 4 ). Cows received grass silage (5.2 kg DM), hay (0.9 kg DM) and a concentrate mixture (2.7 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, 1 day and 1 week after calving. Udder oedema was evaluated by a quantitative and a subjective method. Acidification resulted in a marked decrease in urinary pH, increased urinary Ca excretion and a change in blood acidbase balance. Blood Ca 2+ and plasma Ca tot concentrations were more stable at parturition for the anionic group, although such differences were not statistically significant. Anionic salts (DCAB -41 mEq kg -1 DM) did not cause udder oedema in experimental cows.;



1998 ◽  
Vol 7 (5-6) ◽  
pp. 523-533 ◽  
Author(s):  
S. TAURIAINEN ◽  
S. SANKARI ◽  
S. PYÖRÄLÄ

Twelve Ayrshire and eight Friesian cows were randomly assigned to one of four prepartum diets in a 2 x 2 factorially designed experiment to determine the effect of anionic diet and calcium (Ca) intake on Ca metabolism, acid-base status and feed intake of grass silage based diets during the dry period. Four diets provided either 34 g or 74 g total dietary Ca/day, and were either anionic or cationic. Dietary cation-anion balance (DCAB), calculated as milliequivalents [(Na+ + K+) - (Cl- + S2-)], was -247 mEq/kg dry matter (DM) in the low DCAB group and +34 mEq/kg DM in the high DCAB group. DCAB was formulated using NH4Cl, (NH4)2SO4 and MgCl2 as anionic salts. Cows received grass silage (5.2 kg DM), hay (0.9 kg DM) and concentrate mixture (1.6 kg DM) until calving. Blood and urine samples were collected 4, 3, 2 and 1 week before the expected calving date, at calving, the day after calving and 1 week following calving. The results indicate that the reduction of cation-anion balance induced mild metabolic acidosis and increased the ability of the cow to maintain blood Ca concentration. However, DCAB should be higher since urinary pH decreased markedly (< 6) and so remarkable changes in some blood electrolyte concentrations were noticed.;



Author(s):  
J.D. Leaver ◽  
R.C. Campling

Supplementary feeding of grazing dairy cows is often uneconomic, and whilst supplementation with silage (buffer feeding) can be worthwhile, this often leads to a depletion of winter forage stores. In this study, a mixture of brewers grains and treated straw was used as a supplement. Offered as a 1:1 mixture in the dry matter (DM), it is a purchased substitute for grass silage, having a similar cost, and similar metabolisable energy (ME) and crude protein (CP) contents. The high seasonality adjustments to milk price in mid-late season make supplementation potentially worthwhile.Experiments were carried out from April to September in 1988 and 1989, which had moderate and very low rainfall respectively. Each year 20 British Friesian cows which calved December to March (1988 experiment) and February-April (1989) were allocated at random to either treatment B or C. In B, the cows were offered a 1:1 mixture (DM basis) of brewers grains and NaOH treated chopped barley straw for 60 minutes after morning milking. In C, the cows received no supplement. Both groups were fed 1.0 kg/day of concentrates in the milking parlour. Due to the severe drought in 1989, concentrate feeding was increased to 5.0 kg/day for all cows during the last 4 weeks of the experiment. Also, urea-treated whole crop wheat was fed at a level of 2.5 kg DM/day during the last 7 days.





2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Dóris Pereira Halfen ◽  
Alexandre de Mello Kessler ◽  
Luciano Trevizan ◽  
Juliana Toloi Jeremias ◽  
Thiago Henrique Annibale Vendramini ◽  
...  

ABSTRACT: Urolithiasis is a common disorder in the veterinary clinic and is considered as one of the most frequently cause of morbidity. This disorder is closely associated with urinary pH and nutrition plays a key role in the control of this disease, because through dietary manipulation it is possible to modify the urinary pH. Sulfur is considered macroelement with a strong influence on the acid-base status and may be crucial to control urinary pH in cats. The purpose of this study was to evaluate the effects of addition of different sources of sulfur (S) in the diet of cats on the urinary parameters and acid-base balance. Forty-two healthy adult cats were divided into 3 groups, and each group of 14 cats received 7 diets in a complete randomized block design. Calcium sulfate (CaSO4), DL-methionine (DLM) and methionine hydroxy analog (MHA) were added to a control diet in two levels (1.28g S/kg and 2.56g S/kg) to formulate 6 other experimental diets. The acid-base balance was evaluated by hemogasometry in samples of venous blood. The DLM at the highest level and MHA differed of the control diet in relation to urinary pH (P<0.05). Calcium sulfate; although, not differentiated from the control diet, has been shown to alter urinary pH despite its zero electrolyte balance. Apparently, the alkalizing effect of calcium was not sufficient to avoid sulfate acidification of the urine. Treatments showed no alteration of the acid-base balance of the animals and no affect the consumption of the diets.



1961 ◽  
Vol 201 (6) ◽  
pp. 980-986 ◽  
Author(s):  
Hisato Yoshimura ◽  
Masateru Yata ◽  
Minoru Yuasa ◽  
Robert A. Wolbach

Renal mechanisms for the maintenance of acid-base balance were studied in the normal bullfrog, during metabolic and respiratory acidosis, and after carbonic anhydrase inhibition. Following intravenous administration of 0.3–12 mmole HCl/ kg, as 0.1 n HCl, urinary pH (initially pH 6.3–7.7) did not change significantly. However, urinary ammonia excretion increased more than twofold, and within 3–5 days the cumulative increase was equivalent to the acid load given. Despite the increased ammonia excretion, chloride excretion did not increase after acid loading. In both normal and acidotic bullfrogs ammonia excretion was correlated with an increase in urinary pH. Respiratory acidosis in the small frog, Rana limnocharis, produced by exposure to 6.4% CO2 in air, induced neither urinary acidification nor increased ammonia excretion; both urinary sodium and bicarbonate excretion increased. When renal carbonic anhydrase was inhibited by acetazoleamide injection, urine flow, sodium excretion, and bicarbonate excretion increased markedly, urinary pH increased slightly, and urinary ammonia excretion remained unchanged. These renal responses to acidosis are compared with those of the acidotic dog.



Author(s):  
J J Hyslop ◽  
D J Roberts

In a previous experiment outlined at last year's conference (Hyslop and Roberts, 1988), it was demonstrated that replacement of a proprietary pelleted concentrate with malt distillers grains (draff), should be limited to 15% of total dry matter intake (DMI) when draff is offered in two feeds per day. However there is little evidence to validate such a limitation when draff is used as a concentrate replacement in complete diets. This experiment examined the effect of replacing barley/soya with draff plus additional minerals in silage based complete diets.In a cyclic changeover design experiment consisting of 4 three week periods, fifteen British Friesian cows in early lactation were offered five treatments. Cows were given ad libitum access to one of five complete diets based on grass silage (69 “D”). Draff plus additional minerals gradually replaced barley/soya at increasing rates in diets 0-4 respectively.



2002 ◽  
Vol 74 (3) ◽  
pp. 529-537 ◽  
Author(s):  
D. A. Kenny ◽  
M. P. Boland ◽  
M. G. Diskin ◽  
J. M. Sreenan

AbstractHigh intakes of dietary protein, particularly rumen degradable protein (RDP), lead to elevations in systemic concentrations of ammonia and (or) urea and these may be increased further if associated with inadequate fermentable energy intake. High systemic concentrations of ammonia and urea have been associated with reduced reproductive performance in cattle. The objective of this study was to examine the effect of RDP and fermentable energy intake on a range of blood metabolites and on embryo survival in heifers. Oestrous synchronized, nulliparous beef heifers (no. = 162) were randomly assigned in a 2 ✕ 2 factorial designed experiment to two levels of RDP and two levels of fermentable energy. Grass silage-based diets were supplemented with either 0 (0U) or 240 (240U) g dietary urea (460 g/kg N) and these in turn with either 0 (0P) or 3 (3P) kg dry matter of molassed sugar-beet pulp pellets (MSBP) per day. The four treatments were, therefore, (1) 0U + 0P (no. = 43), (2) 0U + 3P (no. = 44), (3) 240U + 0P (no. = 40) (4) 240U + 3P (no. = 35), respectively. Systemic concentrations of ammonia, urea, insulin, glucose and progesterone were measured. Heifers were given artificial insemination (AI) and embryo survival measured by ultrasonography at 30 and again at 40 days after AI. Systemic ammonia and urea were elevated (P < 0·001) in the animals given the high RDP diets. Supplementation with MSBP reduced systemic urea in the heifers on both high and low RDP diets. Plasma ammonia concentrations were not affected by MSBP supplementation (P > 0·05). Plasma glucose was not affected by urea or MSBP treatment (P > 0·05) but was affected by day and time of sampling (P > 0·05). Plasma concentration of insulin was not affected by urea or MSBP supplementation or by day or time of sampling (P > 0·05). Plasma concentration of progesterone was not affected by diet or time of sampling (P > 0·05). The overall embryo survival rate was 62% and was not affected by dietary urea or fermentable carbohydrate or by systemic concentrations of ammonia, urea, glucose, insulin or progesterone (P > 0·05).



1987 ◽  
Vol 44 (2) ◽  
pp. 173-181 ◽  
Author(s):  
K. Aston ◽  
S. R. Daley ◽  
B. G. Gibbs

ABSTRACTThree experiments were conducted in the early grazing seasons of 1982–84 inclusive. Autumn-calved lactating British Friesian cows grazed a perennial ryegrass pasture either by strip grazing to leave 80 mm residual herbage (SG) or by rotationally grazing six paddocks on a fixed pre-determined cycle (PG). They were offered grazing only or grazing and average quality grass silage (S) or a 1: 1 mix of silage and ensiled brewers' grains (SB) given individually overnight in a cubicle house.In experiment 1, cows received treatments SG or SGS. The intake of silage dry matter (DM) was 4·3 kg/day and the estimated intakes of herbage DM from measured animal performance were 15·2 and 8·9 kg/day respectively. Milk yields were 18·4 and 15·3 kg/day, the concentrations of fat and protein in the milk were 38·0, 41·8 and 33·3, 30·8 g/kg and live-weight change was +679 and +348 g/day for treatments SG and SGS respectively.For experiment 2, cows received treatments SG, PG or PGS and grazing stocking rates were 5·2, 5·5 and 11·0 cows per ha respectively. Silage intake was 6·1 kg/day DM and the estimated intakes of herbage DM were 14·2, 15·3 and 7·7 kg/day respectively. Milk yields were 18·2, 18·2 and 16·1 kg/day, the concentrations of fat and protein were 41·6, 39·8, 42·3 and 33·3, 33·0, 30·4 g/kg and live-weight change was +325, +540 and +161 g/day for treatments SG, PG and PGS respectively.For experiment 3, cows received treatments PG, PGS or PGSB and grazing stocking rates were 5·8, 11·6 and 11·6 cows per ha respectively. The intakes of silage and silage plus brewers' grains DM were 6·5 and 8·5 kg/day. The estimated intakes of herbage DM were 14·2, 7·2 and 7·3 kg/day, milk yields were 18·7, 14·6 and 18·9 kg/day, the concentration of fat and protein in the milk were 37·3, 42·1, 40·3 and 33·4, 32·6, 32·9 g/kg and live-weight change was +425, +415 and +441 g/day for treatments PG, PGS and PGSB respectively.The results show that offering silage overnight allowed grazing stocking rates to be doubled, raised the concentration of fat in the milk and depressed the yields of milk and protein. When brewers' grains were given with the silage, yields of milk fat and protein were greater compared with when silage was offered alone and the yield of fat was greater than for herbage alone.



Sign in / Sign up

Export Citation Format

Share Document