scholarly journals Indoor positioning system for movement path analysis in healthcare institutions

2017 ◽  
Vol 9 (2-3) ◽  
pp. 112 ◽  
Author(s):  
Stefan Grönroos ◽  
Laura-Maria Peltonen ◽  
Valentin Soloviev ◽  
Johan Lilius ◽  
Sanna Salanterä

In this paper, we describe an indoor positioning system designed to provide data on the movement patterns of hospital personnel. The data collection is ongoing and part of a larger study project, which aims to evaluate the impact of an information system implemented in a hospital setting. The indoor positioning system was designed to be non-intrusive and straightforward to deploy in multiple hospitals, while requiring minimal existing infrastructure. To this end, the system is based on battery-powered Bluetooth beacons, and mobile phones measuring the signal strength of the beacons to position their bearers. This paper describes the design and implementation of the system. We analyze the positioning accuracy of the system in order to evaluate its fitness for purpose. Based on the results, the system is suitable for short-term deployments due to its low cost and ease of installation.  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Herryawan Pujiharsono ◽  
Duwi Utami ◽  
Rafina Destiarti Ainul

Wireless network technology that is used today is developing rapidly because of the increasing need for location information of an object with high accuracy. Global Positioning System (GPS) is a technology to estimate the current location. Unfortunately, GPS has a disadvantage of low accuracy of 10 meters when used indoors. Therefore, it began to be developed with the concept of an indoor positioning system. This is a technology used to estimate the location of objects in a building by utilizing WSN (Wireless Sensor Network). The purpose of this study is to estimate the location of the unknown nodes in the lecturer room as an object and obtain the accuracy of the system being tested. The positioning process is based on the received signal strength (RSSI) on the unknown node using the ZigBee module. The trilateration method is used to estimate unknown node located at the observation area based on the signal strength received at the time of testing. The result shows that the path loss coefficient value at the observation area is 0.9836 and the Mean Square Error of the test is 1.251 meters, which indicates that the system can be a solution to the indoor GPS problem.


Building a precise low cost indoor positioning and navigation wireless system is a challenging task. The accuracy and cost should be taken together into account. Especially, when we need a system to be built in a harsh environment. In recent years, several researches have been implemented to build different indoor positioning system (IPS) types for human movement using wireless commercial sensors. The aim of this paper is to prove that it is not always the case that having a larger number of anchor nodes will increase the accuracy. Two and three anchor nodes of ultra-wide band with or without the commercial devices (DW 1000) could be implemented in this work to find the Localization of objects in different indoor positioning system, for which the results showed that sometimes three anchor nodes are better than two and vice versa. It depends on how to install the anchor nodes in an appropriate scenario that may allow utilizing a smaller number of anchors while maintaining the required accuracy and cost.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 136858-136871
Author(s):  
Lu Bai ◽  
Fabio Ciravegna ◽  
Raymond Bond ◽  
Maurice Mulvenna

2015 ◽  
Vol 77 (9) ◽  
Author(s):  
Iyad H Alshami ◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin

In order to enable Location Based Service (LBS) closed environment, many technologies have been investigated to replace the Global Positioning System (GPS) in the localization process in indoor environments. WLAN is considered as the most suitable and powerful technology for Indoor Positioning System (IPS) due to its widespread coverage and low cost. Although WLAN Received Signal Strength Indicator (RSS) fingerprinting can be considered as the most accurate IPS method, this accuracy can be weakened due to WLAN RSS fluctuation. WLAN RSS fluctuates due to the multipath being influenced by obstacles presence. People presence under WLAN coverage can be considered as one of the main obstacles which can affect the WLAN-IPS accuracy. This research presents experimental results demonstrating that people’s presence between access point (AP) and mobile device (MD) reduces the received signal strength by -2dBm to -5dBm. This reduction in RSS can lead to distance error greater than or equal to 2m. Hence, any accurate IPS must consider the presence of people in the indoor environment. 


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1401
Author(s):  
Haq Nawaz ◽  
Ahsen Tahir ◽  
Nauman Ahmed ◽  
Ubaid U. Fayyaz ◽  
Tayyeb Mahmood ◽  
...  

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.


Author(s):  
Omar Ibrahim Mustafa ◽  
Hawraa Lateef Joey ◽  
Noor Abd AlSalam ◽  
Ibrahim Zeghaiton Chaloob

Wireless fidelity (Wi-Fi) is common technology for indoor environments that use to estimate required distances, to be used for indoor localization. Due to multiple source of noise and interference with other signal, the receive signal strength (RSS) measurements unstable. The impression about targets environments should be available to estimate accurate targets location. The Wi-Fi fingerprint technique is widely implemented to build database matching with real data, but the challenges are the way of collect accurate data to be the reference and the impact of different environments on signals measurements. In this paper, optimum system proposed based on modify nearest point (MNP). To implement the proposal, 78 points measured to be the reference points recorded in each environment around the targets. Also, the case study building is separated to 7 areas, where the segmentation of environments leads to ability of dynamic parameters assignments. Moreover, database based on optimum data collected at each time using 63 samples in each point and the average will be final measurements. Then, the nearest point into specific environment has been determined by compared with at least four points. The results show that the errors of indoor localization were less than (0.102 m).


Sign in / Sign up

Export Citation Format

Share Document