scholarly journals Notched Hollow Square Section Steel Column Buckling

2019 ◽  
Vol 4 (1) ◽  
pp. 81-84
Author(s):  
Zia Razzaq ◽  
Solomon Tecleab

Presented in this paper is an outcome of a study to assess the effect of section loss in the form of longitudinal notches on the buckling load of hollow square section steel columns. The theoretical study includes buckling load estimates based on both an iterative equilibrium as well as a non-iterative energy approach. Buckling loads based on sample laboratory experiments are also presented. The study shows that the presence of a notch can significantly reduce the axial load-carrying capacity of a steel column.   

2002 ◽  
pp. 13-27 ◽  
Author(s):  
Noriyuki HORICHI ◽  
Tetsuya HOSAKA ◽  
Teruhiko YODA ◽  
Shinichi KATSUO

2006 ◽  
Vol 326-328 ◽  
pp. 1805-1810 ◽  
Author(s):  
Young Ho Kim ◽  
Seung Sik Lee ◽  
Jae Ho Jung ◽  
Soon Jong Yoon

This paper presents the results of an investigation on the force transfer mechanism in an embedded column base of a composite structure. In the experimental program, eighteen push-out specimens were tested. The factors influencing the mechanism of force transfer were the amount of confining reinforcement, compressive strength of concrete, and diameter of stud connectors. The results of experiment indicated that force transfer could be characterized into two stages, and the factors governing each stage were identified. The first stage was governed by the bond strength between the steel column base and the concrete. The second stage begun after chemical debonding and was governed by the shear strength of stud connectors as well as the frictional strength between the steel and the concrete. Based on the experimental results, the equations to estimate the bond strength, the friction strength, and the shear strength of stud connectors were proposed. The load carrying capacity of an embedded steel column base could be predicted by taking the sum of the shear strength of stud connectors and the friction strength. The predicted load carrying capacity was found to agree well with the experimental results over various range of concrete stress.


1989 ◽  
Vol 111 (3) ◽  
pp. 440-444 ◽  
Author(s):  
M. M. Khonsari ◽  
S. H. Wang ◽  
Y. L. Qi

A theoretical study of the effectiveness of solid particles dispersed in oil in the elastohydrodynamic line contact is presented. The analysis includes the variation of the viscosity and density of the lubricant as a function of pressure. The deformation of solid particles and that of the bounding surfaces are taken into consideration. Results are presented for the variation of the film thickness and the load carrying capacity as a function of the particle size, concentration, and properties of various types of particles.


2019 ◽  
Vol 65 (4) ◽  
pp. 3-19
Author(s):  
M. Siennicki

AbstractThe study investigates the axial load behaviour of concrete filled battened steel columns not covered by the design standards. A series of full scale tests on two I-sections connected together with intermediate batten plates and filled with concrete were carried out. The main parameters varied in the tests are length of the members and strength of the concrete filling. One bare steel member was also tested and results were compared with those filled with concrete. The tests results were illustrated by load-strain curves. The main objectives of these tests were twofold: first, to describe behaviour of new steel-concrete columns and second, to analyze the influence of slenderness on load-carrying capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wei He ◽  
Bing Fu ◽  
Feng-Chen An

The FRP-confined concrete-encased steel column is a new form of hybrid column, which integrates advantages of all the constituent materials. Its structural performance, including load carrying capacity, ductility, and corrosion resistance, has been demonstrated to be excellent by limited experimental investigation. Currently, no systematic procedure, particularly for that with reinforced structural steel of arbitrary shapes, has been proposed for the sectional analysis and design for such novel hybrid columns under biaxial loading. The present paper aims at filling this research gap by proposing an approach for the rapid section analysis and providing rationale basis for FRP-confined concrete-encased arbitrarily shaped steel columns. A robust iterative scheme has been used with a traditional so-called fiber element method. The presented numerical examples demonstrated the validity and accuracy of the proposed approach.


2000 ◽  
Vol 123 (2) ◽  
pp. 232-239 ◽  
Author(s):  
J. Błachut ◽  
P. Wang

The paper considers barreling of a mild steel cylindrical shell as a way of improving its load carrying capacity when subjected to static external pressure. Numerical results show that the load carrying capacity can be increased from 1.4 to 40 times above the load capacity of mass equivalent cylinders. The effect of end boundary conditions on the ultimate load is examined together with sensitivity of buckling loads to initial geometric imperfections.


Sign in / Sign up

Export Citation Format

Share Document