scholarly journals The Variation Effect of Electric Current Toward Tensile Strength on Low Carbon Steel Welding with Electrode E7018

Teknomekanik ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 9-16
Author(s):  
Muhammad Agung Pratomo ◽  
Jasman Jasman ◽  
Nelvi Erizon ◽  
Yolli Fernanda

The strength of the welding result is strongly influenced by several factors, one of which is the selection of high current. This study aims to determine the effect of high current of welding on the strength of low carbon steel welding joints. The process of welding the material uses the open V seam connection type. The variations of the high current used were 80 A, 100 A and 130 A. The specimen used was a carbon steel plate with code of 1.0038 with thickness of 8 mm and the electrode used was the E7018 electrode with diameter of 3.2 mm. The strength of the welding results is influenced by arc voltage, amount of current, welding speed, amount of penetration and electric polarity. Determination of the amount of current in metal joints using arc welding affects the work efficiency and welding materials. Based on the research, it was found that welding using high current of 100 ampere produced the highest tensile strength value of all test specimens that were given welding treatment and good penetration results.

2016 ◽  
Vol 705 ◽  
pp. 250-254 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
M. Wirawan Pu ◽  
Fandi Alfarizi

The aimed of this research is to determine the feasibility and effect of the mixture of the shielding gas in the physical and mechanical properties. Low carbon steel LR grade A in a thickness 12 mm were joined in butt joint types using GMAW (Gas Metal Arc Welding) with groove’s gap 5 mm and groove angle’s 400 with variation of shielding gas composition. The composition of shielding gas that used were 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, bending test, Vickers hardness Test, and Charpy impact test respectively. The physical properties examined with optical microscope. Results show that tensile strength of welding metals are higher than raw materials. Welds metal with mixing Ar + CO shielding gas has the highest tensile strength. Hardness of weld metals with the shielding gas 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2 are 244.9; 209.4; and 209.4 VHN respectively. The temperature of Charpy test was varied to find the transition temperature of the materials. The temperature that used were –60°C, -40°C, -20°C, 0°C, 20°C , and room temperature. Weld metals with various shielding gas have similar trends of toughness flux that was corellated with the microstructure of weld .


2016 ◽  
Vol 1 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Н. Коробова ◽  
N. Korobova ◽  
А. Дмитриев ◽  
A. Dmitriev ◽  
Н. Толмачев ◽  
...  

The method and results of the study of reverse extrusion of billet by cylindrical punch in a conical expanding matrix are described. The mathematical model, which we developed for the determination of specific extrusion force, is described too. The study by statistical method verified the adequacy of the model. This model made possible to assess the resistance of punches and showed the ability to produce deformation of a billet made of low carbon steel without heating. The developed process includes the operation of segmenting of the cylindrical workpieces from bar, heat treatment, lubrication and extrusion of the workpieces. The two-way cold extrusion of a billet is produced in a matrix alternatively by two punches. The design of the stamp is described. The stamp is specialized for reverse extrusion of a billet. In its construction the moving mechanism of action of the two alternately punches in one matrix is used.


2015 ◽  
Vol 2015 (0) ◽  
pp. _J0470105--_J0470105-
Author(s):  
Masaaki KIMURA ◽  
Tsukasa IIJIMA ◽  
Masahiro KUSAKA ◽  
Koichi KAIZU ◽  
Akiyoshi FUJI ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 2528-2531
Author(s):  
Akira Yanagida ◽  
Ryo Aoki ◽  
Masataka Kobayashi

A Nb alloyed low carbon steel was processed by hot equal channel angular extrusion (ECAE) and following transformation. The workpieces were heated up to the 960°C in the furnace for 10 min within the container block. Before extrusion, the die was preheated to 400oC. The workpiece was cooled in the die after ECAE process. 1 pass and 2 pass via route C were conducted at a speed of 32mm/s, the inter-pass time is about 2 sec. The sample of average ferrite grain size of about 2μm, a tensile strength of 800MPa, a total elongation about 20% is produced after 2 pass ECAE processed and subsequent cooling.


2021 ◽  
Vol 2133 (1) ◽  
pp. 012046
Author(s):  
Lei Chu

Abstract With the rapid development of materials, metal materials are used less and less, but at this stage, metal materials are still widely used, and iron and steel materials are the most widely used. Cracks often appear in the process of metal material processing and use, and these cracks will have a certain impact on the use of metal materials. The existence of microcracks will affect the mechanical properties of materials to some extent, but in most cases, the mechanical properties of materials will be greatly reduced, and in serious cases, metal materials will break directly in the process of use or processing. The crack healing process needed after the emergence of cracks can effectively change this situation, but so far, the research on metal crack healing is still not perfect. In this paper, taking the internal crack of low carbon steel as the object, the recovery of mechanical properties of low carbon steel by cyclic phase transformation heat treatment was studied. The results show that with the increase of the healing area, the microhardness of the area after crack healing also increases, and the tensile strength of the specimen also increases after the healing. When the healing area is similar, increasing the healing time and temperature will result in grain coarsening, resulting in the decrease of microhardness and tensile strength in the crack healing zone.


Sign in / Sign up

Export Citation Format

Share Document