scholarly journals Automatic Detection of Voltage Notches using Support Vector Machine

2021 ◽  
Vol 19 ◽  
pp. 528-533
Author(s):  
Rongzhen Qi ◽  
◽  
Olga Zyabkina ◽  
Daniel Agudelo Martinez ◽  
Jan Meyer

This paper presents a comprehensive framework for voltage notch analysis and an automatic method for notch detection using a nonlinear support vector machine (SVM) classifier. A comprehensive simulation of the notch disturbance has been conducted to generate a diverse database. Based on domain knowledge and properties of power quality disturbances (PQDs), a set of characteristic features is extracted. After feature extraction, a set of most descriptive features has been selected with decision tree (DT) algorithm, and a nonlinear SVM classifier has been trained. Finally, the detection efficiency of the trained model is presented and discussed.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianwei Cui ◽  
Mengxiao Shan ◽  
Ruqiang Yan ◽  
Yahui Wu

This paper presents an effective approach for aero-engine fault diagnosis with focus on rub-impact, through combination of improved local discriminant bases (LDB) with support vector machine (SVM). The improved LDB algorithm, using both the normalized energy difference and the relative entropy as quantification measures, is applied to choose the optimal set of orthogonal subspaces for wavelet packet transform- (WPT-) based signal decomposition. Then two optimal sets of orthogonal subspaces have been obtained and the energy features extracted from those subspaces appearing in both sets will be selected as input to a SVM classifier to diagnose aero-engine faults. Experiment studies conducted on an aero-engine rub-impact test system have verified the effectiveness of the proposed approach for classifying working conditions of aero-engines.


2021 ◽  
Vol 40 (1) ◽  
pp. 1481-1494
Author(s):  
Geng Deng ◽  
Yaoguo Xie ◽  
Xindong Wang ◽  
Qiang Fu

Many classification problems contain shape information from input features, such as monotonic, convex, and concave. In this research, we propose a new classifier, called Shape-Restricted Support Vector Machine (SR-SVM), which takes the component-wise shape information to enhance classification accuracy. There exists vast research literature on monotonic classification covering monotonic or ordinal shapes. Our proposed classifier extends to handle convex and concave types of features, and combinations of these types. While standard SVM uses linear separating hyperplanes, our novel SR-SVM essentially constructs non-parametric and nonlinear separating planes subject to component-wise shape restrictions. We formulate SR-SVM classifier as a convex optimization problem and solve it using an active-set algorithm. The approach applies basis function expansions on the input and effectively utilizes the standard SVM solver. We illustrate our methodology using simulation and real world examples, and show that SR-SVM improves the classification performance with additional shape information of input.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2021 ◽  
Vol 5 (11) ◽  
pp. 303
Author(s):  
Kian K. Sepahvand

Damage detection, using vibrational properties, such as eigenfrequencies, is an efficient and straightforward method for detecting damage in structures, components, and machines. The method, however, is very inefficient when the values of the natural frequencies of damaged and undamaged specimens exhibit slight differences. This is particularly the case with lightweight structures, such as fiber-reinforced composites. The nonlinear support vector machine (SVM) provides enhanced results under such conditions by transforming the original features into a new space or applying a kernel trick. In this work, the natural frequencies of damaged and undamaged components are used for classification, employing the nonlinear SVM. The proposed methodology assumes that the frequencies are identified sequentially from an experimental modal analysis; for the study propose, however, the training data are generated from the FEM simulations for damaged and undamaged samples. It is shown that nonlinear SVM using kernel function yields in a clear classification boundary between damaged and undamaged specimens, even for minor variations in natural frequencies.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


Sign in / Sign up

Export Citation Format

Share Document