scholarly journals IoT Monitoring System for Applications with Renewable Energy Generation and Electric Drives

2021 ◽  
Vol 19 ◽  
pp. 565-570
Author(s):  
Maria G. Ioanides ◽  
◽  
Anastasios Stamelos ◽  
Stylianos A. Papazis ◽  
Athanasios Papoutsidakis ◽  
...  

nternet of Things IoT developed for monitoring, control, and management of sectors such as Smart Cities, Energy, Environment, Transport, Manufacture, Industrial Automation, Maritime, Healthcare, Education, etc, by interconnecting devices over internet. New sectors emerged in renewable energy systems, industrial motion drives, sensors and actuators. This article presents the design, and development of specific IoT applications for wind energy generating units, and electric drives. IoT technologies in the control systems of electric machines, mainly in applications of motor drives, and wind energy generating systems, contribute to improved monitoring, and management of performance, and to possible savings of energy. The experimental configurations upgrade laboratory infrastructure and offer new teaching and research perspectives to engineering education.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Alice Coburn ◽  
Eilín Walsh ◽  
Patrick J. Solan ◽  
Kevin P. McDonnell

Ireland has one of the highest wind energy potentials in Europe. The intermittent nature of wind makes this renewable resource impractical as a sole source of energy. Combining wind energy with pumped hydro energy storage (PHES) can overcome this intermittency, consuming energy during low-demand periods and supplying energy for periods of high demand. Currently Ireland has a number of hydroelectric power plants and wind farms of various scales in operation. A feasibility study was conducted to investigate the potential of securing a reliable source of renewable energy by increasing the penetration of hydroelectric power by means of combined wind-PHES developments. The greatest wind potential is experienced along the western coast of Ireland and a number of sites were identified here which satisfied a minimum mean wind speed criterion of 10.5 ms−1. Each site was then further evaluated according to topographical requirements for PHES. All but two of the identified sites are immediately unsuitable due to the presence of areas protected under European legislation; this highlights the nonenergy related obstacles in the path of renewable energy generation in Ireland and suggests that a compromise should be researched which could facilitate both renewable energy generation and species and habitat protection in Europe.


Author(s):  
Zuhaib Ashfaq Khan ◽  
Hafiz Husnain Raza Sherazi ◽  
Mubashir Ali ◽  
Muhammad Ali Imran ◽  
Ikram Ur Rehman ◽  
...  

The recent advancements in the field of communication have led data sharing to become an integral part of today's smart cities with the evolution of concepts such as the internet of vehicles (IoV) paradigm. As a part of IoV, Electric Vehicles (EVs) have recently gained momentum as authorities have started expanding their Low Emission Zones (LEZ) in an effort to build green cities with low carbon footprints. Energy is one of the key requirements of EVs not only to support the smooth and sustainable operation of EV itself but to also ensure connectivity between the vehicles and infrastructure with controlling devices like sensors and actuators installed within an EV. In this context, renewable energy sources (such as wind energy) dramatically play their parts in the automobile sector towards designing the energy harvesting electric vehicles (EH-EV) to pare the energy reliance on the national grid. In this article, a novel approach is presented to achieve electric generation due to vehicle mobility to support the communication primitives in electric vehicles which enables plenty of IoV use cases in the presence of surplus energy at hand. A small-scale wind turbine is designed to harness wind power for converting it into mechanical power. This power is then fed to the onboard DC generator to produce electrical energy. Furthermore, the acquired power is processed through a regulation circuitry to consequently achieve the desired power supply for the end load, i.e. the batteries installed. The suitable orientation for efficient power generation is proposed on ANSYS-based aerodynamics analysis. The voltages induced by DC generator at No-Load condition are 35V while at Full-Load 25V are generated at rated current of 6.9A, along with the generation of power at around 100W (at constant voltage) at the rated speed of 90 mph for nominal battery charging. Moreover, the acquired data can be monitored via an android application interface by using a Bluetooth module.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 302
Author(s):  
Yuchen Yang ◽  
Kavan Javanroodi ◽  
Vahid M. Nik

Climate change can strongly affect renewable energy production. The state of the art in projecting future renewable energy generation has focused on using regional climate prediction. However, regional climate prediction is characterized by inherent uncertainty due to the complexity of climate models. This work provides a comprehensive study to quantify the impact of climate uncertainties in projecting future renewable energy potential over five climate zones of Europe. Thirteen future climate scenarios, including five global climate models (GCMs) and three representative concentration pathways (RCPs), are downscaled by the RCA4 regional climate model (RCM) over 90 years (2010–2099), divided into three 30-year periods. Solar and wind energy production is projected considering short-/long-term climate variations and uncertainties in seven representative cities (Narvik, Gothenburg, Munich, Antwerp, Salzburg, Valencia, and Athens). The results showed that the uncertainty caused by GCMs has the most substantial impact on projecting renewable energy generation. The variations due to GCM selection can become even larger than long-term climate change variations over time. Climate change uncertainties lead to over 23% and 45% projection differences for solar PV and wind energy potential, respectively. While the signal of climate change in solar radiation is weak between scenarios and over time, wind energy generation is affected by 25%.


2022 ◽  
Vol 1 (3) ◽  
pp. 1-4
Author(s):  
Shurbhit Surage ◽  
◽  
M.P.S. Chawla ◽  

The relevance of electricity generation from renewable energy sources is growing every day in the current global energy environment. The scarcity of fossil fuels and the environmental risks connected with traditional power producing methods are the main reasons behind this. The major sources of non-conventional energy are wind and solar which can be harnessed easily. A new system design for hybrid photovoltaic and wind-power generation is introduced within this study. A Modified M.P.P.T. has been proposed to strengthen productivity of this system. The proposed approach employs the Incremental Conductance (IC) MPPT technique. Under varied climatic conditions (Solar irradiance & Temperature), IC is utilized to determine the optimum voltage output of a photo voltaic generator (P.V.G.) within the photo voltaic system (P.V.) structure. The Incremental Conductance is utilized to manage the converter’s technology having boosting function. The P.M.S.G. is used to determine the maximum voltage output for varied wind flow rates in wind turbine system. Simulations are conducted in Matlab2019b to test efficacy of the proposed MPPT. The proposed scheme's effectiveness can be supported with simulation results.


Author(s):  
Shurbhit Surage ◽  
◽  
M.P.S. Chawla ◽  

The relevance of electricity generation from renewable energy sources is growing every day in the current global energy environment. The scarcity of fossil fuels and the environmental risks connected with traditional power producing methods are the main reasons behind this. The major sources of non-conventional energy are wind and solar which can be harnessed easily. A new system design for hybrid photovoltaic and wind-power generation is introduced within this study. A Modified M.P.P.T. has been proposed to strengthen productivity of this system. The proposed approach employs the Incremental Conductance (IC) MPPT technique. Under varied climatic conditions (Solar irradiance & Temperature), IC is utilized to determine the optimum voltage output of a photo voltaic generator (P.V.G.) within the photo voltaic system (P.V.) structure. The Incremental Conductance is utilized to manage the converter’s technology having boosting function. The P.M.S.G. is used to determine the maximum voltage output for varied wind flow rates in wind turbine system. Simulations are conducted in Matlab2019b to test efficacy of the proposed MPPT. The proposed scheme’s effectiveness can be supported with simulation results.


Sign in / Sign up

Export Citation Format

Share Document