A Comprehensive Review on Economic Load Dispatch using Evolutionary Approach

2017 ◽  
Vol 3 (2) ◽  
pp. 7
Author(s):  
Pragya Singh ◽  
Aayushi Priya

Economic Load Dispatch, ELD can be defined as the way of allocating the load level to the generators of the power plant in such a way that the total demand would be supplied in a most economic manner and completely. In a practical power system, the power plants are not located at the same distance from the centre of loads and their fuel costs are different. Also, under normal operating conditions, the generation capacity is more than the total load demand and losses. Thus, there are many options for scheduling generation. In an interconnected power system, the objective is to find the real and reactive power scheduling of each power plant in such a way as to minimize the operating cost. This means that the generator‟s real and reactive powers are allowed to vary within certain limits so as to meet a particular load demand with minimum fuel cost. This is called optimal power flow problem. In this paper, Economic Load Dispatch (ELD) of real power generation is considered. Economic Load Dispatch (ELD) is the scheduling of generators to minimize total operating cost of generator units subjected to equality constraint of power balance within the minimum and maximum operating limits of the generating units. This paper gives a survey of research work covering the concept of economic load dispatch. Economic load dispatch gives the best saving in cost for any power generation plant operation in which the methodology can be applied by various means from conventional to the advanced. In the past years up to 90s, the conventional techniques were used to make this happen but in the past decades AI techniques have fulfilled the requirements with satisfactory results that are being reviewed.

Author(s):  
Paul A. Berman ◽  
Dennis A. Horazak ◽  
Paul W. Pillsbury

A combustion turbine combined cycle that uses coal-derived dirty fuels can be economical if the fuel is processed at the plant site and cost of electricity (COE) is used as the criterion for configuring the power system and selecting its components. In a DOE/METC-sponsored study, 12 combinations of power components and conditioning components were evaluated for each of two fuels: a gas made from coal and a coal/water slurry. One baseline system was selected from each group of 12 systems, based on its potential to achieve a low COE. Each baseline system was then parametrically evaluated to show the effects of specific components on the COE of the power plant. In one of these studies, on-site coal conversion was shown as the key to reducing the COE and the operating cost of the plant, thus improving the chances of the plant being used for baseload operation.


2020 ◽  
Vol 53 (5) ◽  
pp. 725-731
Author(s):  
Mercy Rosalina Kotapuri ◽  
Rajesh Kumar Samala

The demand on the power system rising more rapidly is causing to increase the power system size and capacity. There is a need of interconnection of various generating stations to meet the increased load demand. Economical unit commitment is necessary for plant operation with the advancement in power system integration. The Economical Power Dispatch (EPD) is to find the most favourable combination of generating systems output powers which reduce the fuel cost by satisfying all system constraints. This research involves the fuzzy logic controller (FLC) has been hybridized with Ant-Lion Optimization (ALO) algorithm for EPD. By using this new hybrid technique, minimization of total operating cost by economically dispatch the power to meet the required load and also minimization of system total losses by optimum allocation of DG units were done. Fuel cost function and demand on system are modeled by fuzzy membership functions. The ALO is used to obtain the schedule the committed generating unit’s outputs so as to meet the required load demand. This proposed FLC based ALO technique executed with MATLAB software and applied on IEEE-30 system. Effectiveness of this projected algorithm is determined and evaluated with standalone techniques like conventional ALO, ALO-PSO algorithms.


Author(s):  
Mkhululi Elvis Siyanda Mnguni ◽  
Yohan Darcy Mfoumboulou

The integration of load shedding schemes with mainstream protection in power system networks is vital. The traditional power system network incorporates different protection schemes to protect its components. Once the power network reaches its maximum limits, and the load demand continue to increase the whole system will experience power system instability. The system frequency usually drops due to the loss of substantial generation creating imbalance. The best method to recover the system from instability is by introducing an under-frequency load shedding (UFLS) scheme in parallel with the protection schemes. This paper proposed a new UFLS scheme used in power systems and industry to maintain stability. Three case studies were implemented in this paper. Multi-stage decision-making algorithms load shedding in the environment of the DIgSILENT power factory platform is developed. The proposed algorithm speeds-up the operation of the UFLS scheme. The load shedding algorithm of the proposed scheme is implemented as a systematic process to achieve stability of the power network which is exposed to different operating conditions. The flexibility of the proposed scheme is validated with the modified IEEE 39-bus New England model. The application of the proposed novel UFLS schemes will contribute further to the development of new types of engineers.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2043
Author(s):  
Rizwan Ahmad ◽  
Mahmoud Kassas ◽  
Chokri B. Ahmed ◽  
Faisal Khan ◽  
Sikandar Khan ◽  
...  

Electrical grounding is an indispensable part of the power system network. The grounding system is mainly affected by grounding resistance and the nature of the soil. High ground resistance produces the phenomenon of soil ionization, surface arching, and back flashover. A conventional grounding system requires the deep digging of electrodes, thus creating maintenance difficulties. This research work focuses on the safe operation of an electric power system from external and internal impulses arising due to lightning strikes or short circuits. The study proposes an application of mineral samples as grounding materials, and bentonite is used as backfilling material in portable grounding systems. A detailed experimental analysis was conducted under controlled conditions to evaluate the performance of selected materials in high-resistance soil. The problem of a deeply driven electrode is addressed by designing the portable grounding system. The study results demonstrate that the proposed portable grounding system could be installed in troubled environments such as forests, deserts, and rocky terrains. To measure the breakdown voltages of the proposed samples, X-ray Diffraction (XRD) analysis and other laboratory tests were conducted. The electric field intensities are extracted through Finite Element Analysis (FEA). The experimental and simulation findings show the expected performance of mineral samples under various operating conditions. The findings of this study can guide the practitioners for safe and efficient operations of portable electrical grounding systems.


2018 ◽  
Vol 54 (3A) ◽  
pp. 52
Author(s):  
Duong Thanh Long

Optimal Power Flow (OPF) problem is an optimization tool through which secure and economic operating conditions of power system is obtained. In recent years, Flexible AC Transmission System (FACTS) devices, have led to the development of controllers that provide controllability and flexibility for power transmission. Series FACTS devices such as Thyristor controlled series compensators (TCSC), with its ability to directly control the power flow can be very effective to power system security. Thus, integration TCSC in the OPF is one of important current problems and is a suitable method for better utilization of the existing system. This paper is applied Cuckoo Optimization Algorithm (COA) for the solution of the OPF problem of power system equipped with TCSC. The proposed approach has been examined and tested on the IEEE 30-bus system. The results presented in this paper demonstrate the potential of COA algorithm and show its effectiveness for solving the OPF problem with TCSC devices over the other evolutionary optimization techniques.


Sign in / Sign up

Export Citation Format

Share Document