scholarly journals Synthesis and Antimicrobial Studies of novel metal complexes of testosterone thiosemicarbazone and methandrostenolon thiosemicarbazone

2010 ◽  
Vol 4 (1) ◽  
pp. 73-84
Author(s):  
Redha I. Al-Bayati ◽  
Ahmed AbdulAmier ◽  
Hussain Al-Amiery ◽  
Yasmien K. Al-Majedy

This work involves the chemical synthesis of novel complexes derived from steroid hormones using testosterone and methandrostenolon as starting materials. When these starting materials react with thiosemicarbazide, L1 (testosteronthiosemicarbazone ) and L2 (methandrostenolonthiosemicarbazone ) are formed, and when they react with Cr (III), Co (II), Ni (II), and Cu (II) metal ions a new complexes are formed. The chemical structures for all the prepared compounds were characterized by elemental analysis, FT-IR, and UV/visible spectra. Moreover molar ratio M:L, metal content M%, and magnetic moments (μeff.) were also determined. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. The free ligands and their metal complexes have been tested in vitro against a number of microorganisms (gram positive bacteria (Staphylococcus aureus), and gram negative bacteria (E. coli, Proteus vulgaris, Pseudomonas, and Klebsiella) in order to assess their antimicrobial properties. All the prepared complexes showed considerable activity against all bacteria.

2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Sulekh Chandra ◽  
Smriti Raizada ◽  
Monika Tyagi ◽  
Archana Gautam

A series of metal complexes of Cu(II) and Ni(II) having the general composition[M(L)X2]with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Sulekh Chandra ◽  
Shikha Parmar ◽  
Yatendra Kumar

A series of metal complexes of Zn(II) and Hg(II) having the general composition [where L = 2-formylpyridine thiosemicarbazone; M = Zn(II) and Hg(II); X = , and ] have been prepared and characterized by elemental chemical analysis, molar conductance, and spectral (IR and mass) studies. The IR spectral data suggests the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, a tetrahedral geometry has been assigned for Zn(II) and Hg(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2009 ◽  
Vol 3 (2) ◽  
pp. 1-12
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Yasmien K. Al-Majedy ◽  
Amel Ali

Chromium )III), cobalt (II), nickel (II), copper (II) and cadmium (II) complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone and 1-benzoyl-3-methyl-1H-pyrazol-5(4H)-one have been synthesized and characterized by elemental analysis, FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. Cadmium complex is expected to have tetrahedral structure while the other complexes are expected to have octahedral structure. The free ligands and their metal complexes have been tested in vitro against a number of microorganisms (Staphylococcus aurous, E.coli, Proteus vulgaris, Pseudomonas, and Klebsiella) in order to assess their antimicrobial properties.


2010 ◽  
Vol 4 (2) ◽  
pp. 37-45
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Thorria R. Marzoog ◽  
Yasmien K. Al-Majedy

This study involves the chemical synthesis of the novel ligand 5-(2-diphenylphosphino) phenyl-1,2-dihydro-1,2,4-triazole-3-thione (DPDTT) by the reaction of 2-diphenylphosphino benzoic acid with absolute ethanol that yield ethyl 2-diphenylphosphino benzoate and by cyclization of this compound with thiosemicarbazide, DPDTT will be produced. The chelating complexes of this ligand with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were also prepared and studied. The new complexes were characterized by FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. The stability for the prepared complexes was also measured using the density function theory and it was found that the cadmium complex is the most stable and the chromium complex is the least stable. Free ligand and its metal complexes have been tested in vitro against a number of microorganisms, like gram positive bacteria Staphylococcus aureus and gram negative bacteria E. coli, Proteus vulgaris, Pseudomonas and Klebsiella in order to assess their antimicrobial properties. All complexes showed considerable activity against all the studied bacteria.


Author(s):  
AMAL M ALOSAIMI ◽  
INES EL MANNOUBI ◽  
SAMI A ZABIN

Objective: This work aimed at synthesizing tridentates asymmetrical Schiff base ligands containing sulfur atom and using them for preparing metal complexes with the iron triad metals. The prepared compounds were assayed in vitro for antimicrobial potential and in vivo molluscicidal activity. Methods: The unsymmetrical tridentate Schiff bases (SL1, SL2, and SL3) were prepared using 2-aminothiophenol as primary amine and condensed with 2-carboxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, and 7-formyl-8-hydroxyquinoline. These ligands were used in preparing metal complexes with iron triad metals. The synthesized Schiff base ligands and their corresponding metal complexes were characterized and their proposed structures were confirmed using different physical and spectroscopic analytical techniques. All ligands and their corresponding metal complexes were assayed against different bacterial and fungal strains using the agar disk-diffusion technique. The molluscicidal activity was performed according to the standard reported methods as cited in the literature and by observing the toxicity and lethal dose according to the WHO guidelines. Results: The synthesized ligands behave as tridentate (NOS) ligands and form mononuclear complexes with the general formula [M(SL)2] with an octahedral geometry around the central metal ion. Metal complexes were non-electrolytic in nature. The in vitro antibacterial and antifungal examination results showed weak activity of the ligands, and there was enhanced activity with the complexes. The in vivo molluscicidal activity of the tested compounds showed good activity. Conclusion: The targeted compounds were prepared successfully, characterized, and showed some biological activity but lower than the standard reference drugs.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Gauri Devi Bajju ◽  
Sujata Kundan ◽  
Madhulika Bhagat ◽  
Deepmala Gupta ◽  
Ashu Kapahi ◽  
...  

Results of investigation of the physicochemical properties of zinc complexes containing substituted phenols as axial ligand having general formula [X-Zn-t(p-CH3) PP] [where X = different phenolates as axial ligand] in impurity-free organic solvent are presented. The four-coordinated zinc porphyrin accepts one axial ligand in 1 : 1 molar ratio to form five-coordinated complex, which is purified by column chromatography and characterized by physicochemical, biological evaluation and TGA/DTA studies. Absorption spectra show two principal effects: a red shift for phenols bearing substituted electron releasing groups (−CH3, −NH2) and blue shift for phenols bearing electron withdrawing groups (−NO2, −Cl) relative to Zn-t(p-CH3) PP, respectively.1H NMR spectra show that the protons of the phenol ring axially attached to the central metal ion are merged with the protons of the porphyrin ring. Fluorescence spectra show two fluorescence peaks in the red region with emission ranging from 550 nm to 700 nm. IR spectra confirm the appearance of Zn-NPorand Zn-O vibrational frequencies, respectively. According to the thermal studies, the complexes have a higher thermal stability and the decomposition temperature of these complexes depends on the axial ligation. The respective complexes of X-ZnII-t(p-CH3) PP were found to possess higher antifungal activity (up to 90%) and higherin vitrocytotoxicity against human cancer cells lines.


2020 ◽  
Vol 15 (2) ◽  
pp. 61-72

New pyrazine carbohydra zone ligand N'-(1-(5-chloro-2-hydroxyphenyl) ethylidene) pyrazine-2-carbohydrazide (H2L), prepared by the condensation of equimolar amounts of pyrazine-2-carbohydrazide with 2-hydroxy-5-chloroacetophenone in methanol, reacts with suitable metal salt precursors to give complexes of two general formulae: [M(HL)(Cl)(H2O)2] {M = Mn(II), Co(II), Ni(II) and Cu(II)} and [M(L)(H2O)] {M = Zn(II) and Cd(II)}. Structure of ligand was confirmed by elemental analysis, IR, 1H and 13C NMR and mass spectroscopy, while synthesized complexes were additionally characterized by magnetic susceptibility measurements, molar conductivity measurements, XRD, ESR (for Cu(II)), SEM and thermogravimetric analysis. Spectroscopic studies confirmed a tridentate ONO donor behavior of the ligand towards the central metal ion. The molar conductance (12–17 W–1 cm2 mol–1) measurements in DMSO indicated non-electrolytic nature. Thermal behavior of the complexes suggests their extended stability and the thermal decomposition generally proceeds via partial loss of the organic moiety and ends with the formation of respective metal oxide as a final product. Various kinetic and thermodynamic parameters were evaluated using the Coats-Redfern method. The solid-state electrical conductivity of the complexes measured in the temperature range 303-463 K suggested their semiconducting behavior. The ligand and its metal complexes were screened in vitro for their antibacterial activity against the Gram-positive bacteria S. aureus and B. subtilis, the Gram-negative bacteria E. coli and S. typhi and the fungi C. albicans and A. niger. The obtained results indicated improved activity of the complexes compared to the free ligand against all studied bacterial and fungal species.


2020 ◽  
Vol 3 (2) ◽  
pp. 249-256
Author(s):  
Olubunmi Adewusi ◽  

Novel Schiff base 2-((E)-(1H-indol-5-ylimino)methyl)-4-nitrophenol ligand and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes were synthesized by the stoichiometric reactions between the metal (II) ions and ligand in molar ratio M:L (1:1). The synthesized compounds were characterized using melting point, solubility, molar conductance, room temperature magnetic susceptibility, infra-red and electronic spectroscopies. The assignments of four-coordinate tetrahedral/square planar geometries and the bidentate nature to the complexes was corroborated by IR, electronic spectroscopies, and magnetic moments. The Pd(II) complex however was assigned an octahedral geometry. The in-vitro antimicrobial studies revealed the potential of some of the compounds as antimicrobial agents. The ligand and its metal complexes exhibited good to moderate antimicrobial activity against tested bacteria with selective inactivity against P. mirabilis and P. aureginosa. Keywords: 2-((E)-(1H-indol-5-ylimino)methyl)-4-nitrophenol, magnetic susceptibility, square planar geometry, inhibitory zone.


Author(s):  
Dr. Vilas G. Deshpande

As it is proved that the transition metal complexes have drug activities, hence we have synthesized heterocyclic Schiff bases. Six complexes of Co(II), Ni(II), Fe(III), Mn(II), Cr(II) and Cu(II) Schiff bases have been prepared. All ligands and its metal complexes the structures of the complexes have been proposed by analytical data, conductivity measurement, magnetic moment, IR, 1H NMR spectra and thermal studies. Analytical data confirmed 1:2 (metal:ligand) stoichiometry and the spectral data suggest that all Fe(III), Mn(II), Cr(II), Ni(II) and Co(II) complexes have octahedral geometry where as the Cu(II) metal complex shows the square planar geometry. The molar conductance values of metal complexes suggest their non electrolytic nature. The IR spectral data reveals that the ligand behaves as bidentate with O,N donor atoms sequence towards central metal ion. Antibacterial and antifungal activities of ligands and its metal complexes were performed in vitro against E.coli, S. typhi, S. aureus, B. subtilis and against various fungi like P.chrysogenum, A. niger, F. moniliformae, and A.Flavus. The complexes show more activity compare to the ligand.


2004 ◽  
Vol 1 (1) ◽  
pp. 110-115
Author(s):  
Baghdad Science Journal

We found that 4,5- diphenyl- 3(2- propynyl) thio- 1??-triazole [1? forms a complex with Pd (11) ion of ratio 1:1 which absorbs light in CH2CI2 at 400 nm, and 4,5- diphenyl- 3(2- propenyl) thio- 1,2,4- triazole [II] forms complexes with Pd (II) ion of ratio 1:1 which absorbs light at 390 nm, and of ratio 2:1 which absorbs light at 435 nm. On the other hand, we found that the new derivative 4- phenyl- 5( p- amino phenyl) -3- mercapto- 1,2,4- triazole ?111? forms complexes with Cu (II) ion of the ratio 1:1 which absorbs light at 380 nm, with Ni (II) ion of the ratio 3:1 which absorbs light at 358 nm; and with Co (11) ion of the ratio 3.2:1 which absorbs light at 588 nm. The ratio of the complexes were determined by measuring the electronic spectra of the complexes in CH2G2 and (CH^NCHO at different concentrations ofthe ligands and f?xed ' •' of the metal ion in every case, then applying the molar ratio plots on the data. Our results were confirmed by precipitating most ofthe above complexes in solid state, and then each complex was analyzed elementally.


Sign in / Sign up

Export Citation Format

Share Document