scholarly journals Biometrical driver face verification

2018 ◽  
Vol 19 (6) ◽  
pp. 68-72
Author(s):  
Jolanta Chmielińska ◽  
Jacek Jakubowski

The paper discusses the problem of face verification in a driver monitoring system for the purpose of traffic safety. Two different methods of face verification were proposed. Both of them are based on a convolutional neural network and were developed with the use of a transfer learning technique. In the paper, the results produced by both proposed method have been presented and compared. Moreover, their advantages and disadvantages have been discussed.

2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


10.2196/24762 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e24762
Author(s):  
Hyun-Lim Yang ◽  
Chul-Woo Jung ◽  
Seong Mi Yang ◽  
Min-Soo Kim ◽  
Sungho Shim ◽  
...  

Background Arterial pressure-based cardiac output (APCO) is a less invasive method for estimating cardiac output without concerns about complications from the pulmonary artery catheter (PAC). However, inaccuracies of currently available APCO devices have been reported. Improvements to the algorithm by researchers are impossible, as only a subset of the algorithm has been released. Objective In this study, an open-source algorithm was developed and validated using a convolutional neural network and a transfer learning technique. Methods A retrospective study was performed using data from a prospective cohort registry of intraoperative bio-signal data from a university hospital. The convolutional neural network model was trained using the arterial pressure waveform as input and the stroke volume (SV) value as the output. The model parameters were pretrained using the SV values from a commercial APCO device (Vigileo or EV1000 with the FloTrac algorithm) and adjusted with a transfer learning technique using SV values from the PAC. The performance of the model was evaluated using absolute error for the PAC on the testing dataset from separate periods. Finally, we compared the performance of the deep learning model and the FloTrac with the SV values from the PAC. Results A total of 2057 surgical cases (1958 training and 99 testing cases) were used in the registry. In the deep learning model, the absolute errors of SV were 14.5 (SD 13.4) mL (10.2 [SD 8.4] mL in cardiac surgery and 17.4 [SD 15.3] mL in liver transplantation). Compared with FloTrac, the absolute errors of the deep learning model were significantly smaller (16.5 [SD 15.4] and 18.3 [SD 15.1], P<.001). Conclusions The deep learning–based APCO algorithm showed better performance than the commercial APCO device. Further improvement of the algorithm developed in this study may be helpful for estimating cardiac output accurately in clinical practice and optimizing high-risk patient care.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


2020 ◽  
Author(s):  
Hyun-Lim Yang ◽  
Chul-Woo Jung ◽  
Seong Mi Yang ◽  
Min-Soo Kim ◽  
Sungho Shim ◽  
...  

BACKGROUND The arterial pressure-based cardiac output (APCO) is a less-invasive method for estimating the cardiac output without worries about complications from the pulmonary artery catheter (PAC). However, inaccuracies of the currently available APCO devices have been reported. Improvements of the algorithm by researchers are also impossible, since only a subset of the algorithm has been released. OBJECTIVE In this study, we developed and validated an open source APCO algorithm using convolutional neural network and the transfer learning technique. METHODS We did a retrospective study using data from a prospective cohort registry of intraoperative bio-signal data at a university hospital. The convolutional neural network model was trained using the arterial pressure waveform as input and the stroke volume (SV) value as output. The model parameters were pre-trained using the SV values from a commercial APCO device (Vigileo™ or EV1000™ with FloTrac™ algorithm) and adjusted by a transfer learning technique using SV values from the PAC. The performance of the model was evaluated by using absolute error for the PAC on the testing dataset from separate periods. Finally, we compared the performance of the deep learning model and the FloTrac with SV values from the PAC. RESULTS We used 2,057 surgical cases (1,958 training and 99 testing) in the registry for modelling. In the deep learning model, the absolute errors of SV were 14.5 ± 13.4 mL (10.2 ± 8.4 mL and 17.4 ± 15.3 in cardiac surgery and liver transplantation, respectively). In the comparison with FloTrac, the absolute errors of the deep learning model were significantly smaller than those of the FloTrac (16.5 ± 15.4 and 18.3 ± 15.1, respectively, P < .001). CONCLUSIONS The deep learning-based APCO algorithm showed better performance than the commercial APCO device. Further improvement of the algorithm developed in this study may be helpful for estimating cardiac output accurately in clinical practice and optimizing high-risk patient care. CLINICALTRIAL Not applicable.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


Sign in / Sign up

Export Citation Format

Share Document