scholarly journals NUMERICAL CALCULATION OF NONSTATIONARY FRACTIONAL DIFFERENTIAL EQUATION IN PROBLEMS OF MODELING TOXIC SUBSTANCES DISTRIBUTION IN GROUND WATERS

Author(s):  
Alexandra Alekseyevna Afanasyeva ◽  
Tatyana Nikolayevna Shvetsova-Shilovskaya ◽  
Dmitriy Evgenevich Ivanov ◽  
Denis Igorevich Nazarenko ◽  
Elena Victorovna Kazarezova

At present, the theory of fractional calculus is widely used in many fields of science for modeling various processes. Differential equations with fractional derivatives are used to model the migration of pollutants in porous inhomogeneous media and allow a more correct description of the behavior of pollutants at large distances from the source. The analytical solution of differential equations with fractional order derivatives is often very complicated or even impossible. There has been proposed a numerical method for solving fractional differential equations in partial derivatives with respect to time to describe the migration of pollutants in groundwater. An implicit difference scheme is developed for the numerical solution of a non-stationary fractional differential equation, which is an analogue of the well-known implicit Crank-Nicholson difference scheme. The system of difference equations is presented in matrix form. The solution of the problem is reduced to the multiple solution of a tridiagonal system of linear algebraic equations by the tridiagonal matrix algorithm. The results of evaluating the spread of pollutant in groundwater based on the numerical method for model examples are presented. The concentrations of the substance obtained on the basis of the analytical and numerical solutions of the unsteady one-dimensional fractional differential equation are compared. The results obtained using the proposed method and on the basis of the well-known analytical solution of the fractional differential equation are in fairly good agreement with each other. The relative error is on average 9%. In contrast to the well-known analytical solution, the developed numerical method can be used to model the spread of pollutants in groundwater, taking into account their biodegradation.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zain ul Abdeen ◽  
Mujeeb ur Rehman

PurposeThe purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear Hadamard-type fractional differential equations.Design/methodology/approachThe aim of this paper is to develop a numerical scheme for numerical solutions of Hadamard-type fractional differential equations. The classical Haar wavelets are modified to align them with Hadamard-type operators. Operational matrices are derived and used to convert differential equations to systems of algebraic equations.FindingsThe upper bound for error is estimated. With the help of quasilinearization, nonlinear problems are converted to sequences of linear problems and operational matrices for modified Haar wavelets are used to get their numerical solution. Several numerical examples are presented to demonstrate the applicability and validity of the proposed method.Originality/valueThe numerical method is purposed for solving Hadamard-type fractional differential equations.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 463-472 ◽  
Author(s):  
Abdulnasir Isah ◽  
Chang Phang

AbstractIn this work, we propose a new operational method based on a Genocchi wavelet-like basis to obtain the numerical solutions of non-linear fractional order differential equations (NFDEs). To the best of our knowledge this is the first time a Genocchi wavelet-like basis is presented. The Genocchi wavelet-like operational matrix of a fractional derivative is derived through waveletpolynomial transformation. These operational matrices are used together with the collocation method to turn the NFDEs into a system of non-linear algebraic equations. Error estimates are shown and some illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed technique.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 107-118
Author(s):  
Jumana Alkhalissi ◽  
Ibrahim Emiroglu ◽  
Aydin Secer ◽  
Mustafa Bayram

In this paper we present a new method of wavelets, based on generalized Gegen?bauer-Humberts polynomials, named generalized Gegenbauer-Humberts wave?lets. The operational matrix of integration are derived. By using the proposed method converted linear and non-linear fractional differential equation a system of algebraic equations. In addition, discussed some examples to explain the efficiency and accuracy of the presented method.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 107-118
Author(s):  
Jumana Alkhalissi ◽  
Ibrahim Emiroglu ◽  
Aydin Secer ◽  
Mustafa Bayram

In this paper we present a new method of wavelets, based on generalized Gegen?bauer-Humberts polynomials, named generalized Gegenbauer-Humberts wave?lets. The operational matrix of integration are derived. By using the proposed method converted linear and non-linear fractional differential equation a system of algebraic equations. In addition, discussed some examples to explain the efficiency and accuracy of the presented method.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 96 ◽  
Author(s):  
İbrahim Avcı ◽  
Nazim I. Mahmudov

In this article, we propose a numerical method based on the fractional Taylor vector for solving multi-term fractional differential equations. The main idea of this method is to reduce the given problems to a set of algebraic equations by utilizing the fractional Taylor operational matrix of fractional integration. This system of equations can be solved efficiently. Some numerical examples are given to demonstrate the accuracy and applicability. The results show that the presented method is efficient and applicable.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jingjing Tan ◽  
Meixia Li ◽  
Aixia Pan

We prove that there are unique positive solutions for a new kind of fractional differential equation with a negatively perturbed term boundary value problem. Our methods rely on an iterative algorithm which requires constructing an iterative scheme to approximate the solution. This allows us to calculate the estimation of the convergence rate and the approximation error.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


2019 ◽  
Vol 34 (01) ◽  
pp. 2050015 ◽  
Author(s):  
C. Vinothkumar ◽  
J. J. Nieto ◽  
A. Deiveegan ◽  
P. Prakash

We consider the hyperbolic type fuzzy fractional differential equation and derive the second-order fuzzy fractional differential equation using scaling transformation. We present a theoretical and a numerical method to find the invariant solutions of such equations. Also, we prove the existence and uniqueness results using Banach fixed point theorem. Numerical solutions are approximated using finite difference method. Finally, numerical examples are given to illustrate the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rabha W. Ibrahim

We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa operators.


Sign in / Sign up

Export Citation Format

Share Document