scholarly journals Numerical Solutions for Multi-Term Fractional Order Differential Equations with Fractional Taylor Operational Matrix of Fractional Integration

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 96 ◽  
Author(s):  
İbrahim Avcı ◽  
Nazim I. Mahmudov

In this article, we propose a numerical method based on the fractional Taylor vector for solving multi-term fractional differential equations. The main idea of this method is to reduce the given problems to a set of algebraic equations by utilizing the fractional Taylor operational matrix of fractional integration. This system of equations can be solved efficiently. Some numerical examples are given to demonstrate the accuracy and applicability. The results show that the presented method is efficient and applicable.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Author(s):  
Chandrali Baishya ◽  
P. Veeresha

The Atangana–Baleanu derivative and the Laguerre polynomial are used in this analysis to define a new computational technique for solving fractional differential equations. To serve this purpose, we have derived the operational matrices of fractional integration and fractional integro-differentiation via Laguerre polynomials. Using the derived operational matrices and collocation points, we reduce the fractional differential equations to a system of linear or nonlinear algebraic equations. For the error of the operational matrix of the fractional integration, an error bound is derived. To illustrate the accuracy and the reliability of the projected algorithm, numerical simulation is presented, and the nature of attained results is captured in diverse order. Finally, the achieved consequences enlighten that the solutions obtained by the proposed scheme give better convergence to the actual solution than the results available in the literature.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 463-472 ◽  
Author(s):  
Abdulnasir Isah ◽  
Chang Phang

AbstractIn this work, we propose a new operational method based on a Genocchi wavelet-like basis to obtain the numerical solutions of non-linear fractional order differential equations (NFDEs). To the best of our knowledge this is the first time a Genocchi wavelet-like basis is presented. The Genocchi wavelet-like operational matrix of a fractional derivative is derived through waveletpolynomial transformation. These operational matrices are used together with the collocation method to turn the NFDEs into a system of non-linear algebraic equations. Error estimates are shown and some illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed technique.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Author(s):  
Umer Saeed

In this paper, we present a reliable method for solving system of fractional nonlinear differential equations. The proposed technique utilizes the Haar wavelets in conjunction with a quasilinearization technique. The operational matrices are derived and used to reduce each equation in a system of fractional differential equations to a system of algebraic equations. Convergence analysis and implementation process for the proposed technique are presented. Numerical examples are provided to illustrate the applicability and accuracy of the technique.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Author(s):  
M. M. Khader ◽  
Ibrahim Al-Dayel

The propose of this paper is to introduce and investigate a highly accurate technique for solving the fractional Logistic and Ricatti differential equations of variable-order. We consider these models with the most common nonsingular Atangana–Baleanu–Caputo (ABC) fractional derivative which depends on the Mittag–Leffler kernel. The proposed numerical technique is based upon the fundamental theorem of the fractional calculus as well as the Lagrange polynomial interpolation. We satisfy the efficiency and the accuracy of the given procedure; and study the effect of the variation of the fractional-order [Formula: see text] on the behavior of the solutions due to the presence of ABC-operator by evaluating the solution with different values of [Formula: see text]. The results show that the given procedure is an easy and efficient tool to investigate the solution for such models. We compare the numerical solutions with the exact solution, thereby showing excellent agreement which we have found by applying the ABC-derivatives. We observe the chaotic solutions with some fractional-variable-order functions.


Sign in / Sign up

Export Citation Format

Share Document