Elaborating a Software Package for Solving Free-surface Hydrodynamic Problems Based on the MPS Method

Vestnik MEI ◽  
2017 ◽  
pp. 13-19
Author(s):  
D. V. Gudemenko ◽  
◽  
P. S. Klimov ◽  
V. I. Melikhov ◽  
O. I. Melikhov ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chunhui Wang ◽  
Chunyu Guo ◽  
Fenglei Han

Modified 3D Moving Particle Semi-Implicit (MPS) method is used to complete the numerical simulation of the fluid sloshing in LNG tank under multidegree excitation motion, which is compared with the results of experiments and 2D calculations obtained by other scholars to verify the reliability. The cubic spline kernel functions used in Smoothed Particle Hydrodynamics (SPH) method are adopted to reduce the deviation caused by consecutive two times weighted average calculations; the boundary conditions and the determination of free surface particles are modified to improve the computational stability and accuracy of 3D calculation. The tank is under forced multidegree excitation motion to simulate the real conditions of LNG ships, the pressures and the free surfaces at different times are given to verify the accuracy of 3D simulation, and the free surface and the splashed particles can be simulated more exactly.


2017 ◽  
Vol 66 ◽  
pp. 95-116 ◽  
Author(s):  
Farnoush A. Daneshvar ◽  
G. Reza Rakhshandehroo ◽  
Nasser Talebbeydokhti

2018 ◽  
Vol 2018.13 (0) ◽  
pp. 106
Author(s):  
Yusuke Sasaki ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

2017 ◽  
Vol 20 (6) ◽  
pp. 1268-1285 ◽  
Author(s):  
Masoud Arami Fadafan ◽  
Masoud-Reza Hessami Kermani

Abstract Moving particle semi-implicit (MPS) method is one of the Lagrangian methods widely used in engineering issues. This method, however, suffers from unphysical oscillations in its original form. In the present study, a modified incompressible MPS method is proposed to suppress these oscillations and is used for simulating free surface problems. To demonstrate the stability of the presented method, different kernel functions are used in the case of numerical dam break modeling as a benchmark simulation. A simple form of definition of curved wall boundaries is suggested which eliminates dummy particles and subsequently saves CPU time. Flow over an ogee spillway is simulated for the first time with the I-MPS method and as a new test case which has several curved lines in its geometry. The comparisons between theoretical solutions/experimental data and simulation results in terms of free surface and pressure show the accuracy of the method.


Author(s):  
Shuai Zhang ◽  
Koji Morita ◽  
Noriyuki Shirakawa ◽  
Yuichi Yamamoto

A new next generation safety analysis code, COMPASS, is designed based on the moving particle semi-implicit (MPS) method to provide local information for various key phenomena in core disruptive accidents of sodium-cooled fast reactors. In FY2006, improvement of basic fluid dynamics models for the COMPASS code was carried out and verified with fundamental verification calculations. In order to improve the numerical stability of MPS simulations, a fully implicit pressure solution algorithm was introduced instead of the two-stage MAC algorithm originally applied by MPS. With a newly developed free surface model, numerical difficulty caused by poor pressure solutions is overcome by involving free surface particles in the pressure Poisson equation. An improved algorithm was also proposed for surface tension calculation with the continuous surface force (CSF) model applied to the moving particle method. This algorithm provides higher numerical precision with the CSF model by interpolation between moving particles and background mesh. Application of the fully Lagrangian MPS method to solid-fluid mixture flow problems is straightforward. In FY2006, applicability of the MPS method to interactions between fluid and multi-solid bodies was investigated in comparison with dam-break experiments with solid balls. It was found that a modified pressure solution algorithm makes simulation with the passively moving solid model stable numerically. Though characteristic behavior of solids was successfully reproduced by the present numerical simulations, the comparisons with the experimental results showed that interactions between solids and solid-wall should be modeled for more precise simulations. Therefore, the discrete element method will be considered in the next stage.


2016 ◽  
Vol 13 (04) ◽  
pp. 1641018 ◽  
Author(s):  
Zhenyuan Tang ◽  
Youlin Zhang ◽  
Decheng Wan

A multi-resolution moving particle semi-implicit (MPS) method is applied into two-dimensional (2D) free surface flows based on our in-house particle solver MLParticle-SJTU in the present work. Considering the effect of different size particles, both the influence radiuses of two adjacent particles are replaced by the arithmetic mean of their interaction radiuses. Then the modifications for kernel function of differential operator models are derived, respectively. In order to validate the present multi-resolution MPS method, two cases are carried out. Firstly, a hydrostatic case is performed. The results show that the contour of pressure field by multi-resolution MPS is quite in agreement with that by single resolution MPS. Especially, the multi-resolution MPS can still provide a relative smooth pressure together with the single resolution MPS in the vicinity of the interface between the high resolution and low resolution particles. For a long time simulation, the kinetic energy of particles by multi-resolution MPS can decrease quickly to the same level as that of single resolution MPS. In addition, a 2D dam breaking flow is simulated and the multi-resolution case can run stably during the whole simulation. The pressure by the multi-resolution MPS is in agreement with experimental data together with single resolution MPS. The contour of pressure field by the former is also similar to that by the later. Finally, the simulation by multi-resolution MPS is as accurate as the traditional MPS with fine particles distributed in the whole domain and the corresponding CPU time can be reduced.


2019 ◽  
Vol 16 (04) ◽  
pp. 1843012 ◽  
Author(s):  
Xiang Chen ◽  
Decheng Wan

The Moving Particle Semi-implicit (MPS) method has been widely used in the field of computational fluid dynamics in recent years. However, the inefficient drawback of MPS method limits its three-dimensional (3D) large-scale applications. In order to overcome this disadvantage, a novel acceleration technique, graphics processing unit (GPU) parallel computing, is applied in MPS. Based on modified MPS method and GPU technique, an in-house solver MPSGPU-SJTU has been developed by using Compute Unified Device Architecture (CUDA) language. In this paper, 3D dam break and sloshing, two typical violent flows with large deformation and nonlinear fragmentation of free surface are simulated by MPSGPU-SJTU solver. In dam break case, the results of fluid flied, water front, wave height and impact pressure by GPU simulation are compared to those by CPU calculation, experimental research, Smooth Particle Hydrodynamics (SPH) and Boundary Element Method (BEM) simulations. And the comparison of fluid field and impact pressure among GPU, CPU and experiment is made in sloshing flow. The accuracy of GPU solver is verified by these comparisons. Moreover, the computation time of every part in each calculation step is compared between GPU and CPU solvers. The results show that computational efficiency is improved dramatically by employing GPU acceleration technique.


Sign in / Sign up

Export Citation Format

Share Document