Level set-based topology optimization for free surface flow using MPS method

2018 ◽  
Vol 2018.13 (0) ◽  
pp. 106
Author(s):  
Yusuke Sasaki ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki
2017 ◽  
Vol 66 ◽  
pp. 95-116 ◽  
Author(s):  
Farnoush A. Daneshvar ◽  
G. Reza Rakhshandehroo ◽  
Nasser Talebbeydokhti

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Puyang Gao

In this paper, we develop a new computational framework to investigate the sloshing free surface flow of Newtonian and non-Newtonian fluids in the rectangular tanks. We simulate the flow via a two-phase model and employ the fixed unstructured mesh in the computation to avoid the mesh distortion and reconstruction. As for the solution of Navier–Stokes equation, we utilize the SUPG finite element method based on the splitting scheme. The same order interpolation functions are then used for velocity and pressure. Moreover, the moving interface is captured via the concise level set method. We take advantage of the implicit discontinuous Galerkin method to handle the solution of level set and its reinitialization equations. A mass correction technique is also added to ensure the mass conservation property. The dam break-free surface flow is simulated firstly to demonstrate the validity of our mathematical model. In addition, the sloshing Newtonian fluid in the tank with flat and rough bottoms is considered to illustrate the feasibility and robustness of our computational scheme. Finally, the development of free surface for non-Newtonian fluid is also studied in the two tanks, and the influence of power-law index on the sloshing fluid flow is analyzed.


2001 ◽  
Vol 27 (3) ◽  
pp. 233-243 ◽  
Author(s):  
N. H. Sharif ◽  
N.-E. Wiberg ◽  
M. Levenstam

2016 ◽  
Vol 140 ◽  
pp. 97-110 ◽  
Author(s):  
Eugenio Schillaci ◽  
Lluís Jofre ◽  
Néstor Balcázar ◽  
Oriol Lehmkuhl ◽  
Assensi Oliva

2011 ◽  
Vol 79 (1) ◽  
Author(s):  
I. Akkerman ◽  
Y. Bazilevs ◽  
D. J. Benson ◽  
M. W. Farthing ◽  
C. E. Kees

This paper presents our approach for the computation of free-surface/rigid-body interaction phenomena with emphasis on ship hydrodynamics. We adopt the level set approach to capture the free-surface. The rigid body is described using six-degree-of-freedom equations of motion. An interface-tracking method is used to handle the interface between the moving rigid body and the fluid domain. An Arbitrary Lagrangian–Eulerian version of the residual-based variational multiscale formulation for the Navier–Stokes and level set equations is employed in order to accommodate the fluid domain motion. The free-surface/rigid body problem is formulated and solved in a fully coupled fashion. The numerical results illustrate the accuracy and robustness of the proposed approach.


2014 ◽  
Vol 26 (2) ◽  
pp. 316-325 ◽  
Author(s):  
Lan-hao Zhao ◽  
Jia Mao ◽  
Xiao-qing Liu ◽  
Xin Bai ◽  
J. J. R. Williams

Sign in / Sign up

Export Citation Format

Share Document