scholarly journals Comparison Ability of Polymers Acrycoat S100 And HPMC K4M to Entrapment Efficiency Domperidone in Microspheres

Author(s):  
Pratiwi Apridamayanti ◽  
Nora Nurlina Sinaga ◽  
Rise Desnita

Domperidone is a prokinetic and antiemetic agent which has low bioavaibility. To increase the bioavaibility of drug, it can be modified into microsphere that can hold drug more longer in gastric to improve the bioavaibility. The microsphere preparation requires a polymer that can make matrix system to protect and deliver the drugs. Acrycoat S100 and HPMC K4M are the usual polymers that used for encapsulation and  have biodegradable characteristic. The aim of this research is to know the comparison ability of two different polymers to entrapment the drug in microsphere. Microsphere domperidone made by solvent evaporation method in 6 formula. F1, F2 and F3 using 50 mg, 100 mg and 150 mg Acrycoat S100 polymer, while F4, F5 and F6 using 50 mg, 100 mg and 150 mg HPMC K4m polymer. The tests were conducted by the determination of the percentage of entrapment efficiency using UV spectrophotometer and evaluation of organoleptic, particle measurement and surface microsphere morphology. The results showed that F3 with Acrycoat S100 polymer has a greater entrapment efficiency of 78,712% ± 4,260% compared to the highest percentage efficiency of HPMC K4M polymer of 4,734±0,390.Key words: Acrycoat S100, domperidone, entrapment efficiency, HPMC K4M, microsphere

1970 ◽  
Vol 3 (2) ◽  
pp. 43-46
Author(s):  
Riaz Uddin ◽  
Farzana Ali ◽  
Subrata Kumar Biswas

Key Words: Solid dispersions; solvent evaporation method; atorvastatin; HPMCDOI: http://dx.doi.org/10.3329/sjps.v3i2.8036 S.J. Pharm. Sci 3(2): 43-46


Author(s):  
KAUSLYA ARUMUGAM ◽  
PAYAL D. BORAWAKE ◽  
JITENDRA V. SHINDE

Objective: The main intention of this research was to formulate and evaluate floating microspheres of ciprofloxacin using different polymers to prolong gastric residence time. Methods: The microspheres were formulated by the solvent evaporation method using different ratios of polymers like carbopol 940, ethylcellulose, and Hydroxy Propyl Methyl Cellulose K4M. Further, the floating microspheres were evaluated for micromeritic properties like bulk density, tapped density, angle of repose, etc., percentage yield, particle size, entrapment efficiency, floating capacity, in vitro drug release study, release kinetics, drug content, swelling index, and Fourier Transform Infrared Spectroscopy (FTIR) (Compatibility studies). Results: The ciprofloxacin microspheres showed the good flowing property. The particle size ranged from 258.1±2.21 µm to 278±2.86 µm and entrapment efficiency ranged from 63.17±0.43% to 89.90±1.32%. The IR spectrum revealed that there was no interaction between the drug and polymer. F7 formulation was found to be the best formulation. Drug release was found to be 90.70±0.89% i.e. in a controlled manner at the end of 10 h. Conclusion: The floating microspheres were prepared successfully and the results clearly stated that prepared ciprofloxacin microspheres may be safe and effective controlled drug delivery over an extended period which can increase bioavailability, patient compliance, and decrease dosing frequency.


Author(s):  
Dinesh V. Panpaliya ◽  
Atish Y. Sahare ◽  
Priyanka Lanje ◽  
Pooja Dhoke

The aim of the present work was to develop and evaluate of oral microsphere of Levetiracetam to reduce the frequency of dosing by achieving 12 hours sustained drug release. The microsphere formed will also mask the bitter taste of the drug and thus increase the compatibility of the drug with the patients. Levetiracetam is a second-generation anti-epileptic agent useful in the treatment of partial onset and monoclinic seizures. It has a short half life of 7 hours and its recommended dose is 500 mg twice a daily. Microspheres are suitable drug delivery system for such drug candidate. For these reasons it is must to formulate a suitable dosage form by which it will be easier to administer the dose and also to get a sustained drug release hence microsphere was prepared using solvent evaporation method. Preformulation studies were carried out to rule out any drug polymer interaction by FTIR technique. In this study formulation was done solvent evaporation method using different percentage of HPMC– K 100, HPMC- K 15 and coated with Eudragit S100. Drug, polymer and physical mixture were evaluated for in compatibility study by Fourier transforms infrared spectroscopy. All the batches of microsphere (F1 to F5) were subjected for in vitro dissolution. Microsphere was evaluated for surface morphology, micromeritics properties, entrapment efficiency and in vitro drug release. The entrapment efficiency of microsphere ranged from 71.16%-73.66%. The size of the prepared microsphere ranges between 42.8 µm to 55.64 µm which was found to increase with increase in RPM at same polymer ratio. Micromeritics studies showed good flow properties. Among the microsphere batches, F5 was observed as an optimized batch as its formulation with polymer i.e. Eudragit-S 100 and HPMC-K 100 was found to be release in sustained manner. The F-5 batch shows is 79.45% drug release at the end of 7 hrs and its stability study indicate that these microspheres were stable at selected temperature and humidity


2019 ◽  
Vol 69 (7) ◽  
pp. 467-475
Author(s):  
Esmeralda Villicaña-Molina ◽  
Edith Pacheco-Contreras ◽  
Ena Athenea Aguilar-Reyes ◽  
Carlos Alberto León-Patiño

Author(s):  
Ninda Sukmaningrum ◽  
Lusia Oktora Ruma Kumala Sari ◽  
Eka Deddy Irawan

Metformin hidroklorida (MH) merupakan obat pilihan pertama yang digunakan dalam terapi diabetes mellitus tipe 2, namun dapat menimbulkan efek samping pada saluran pencernaan sehingga MH tepat dipreparasi menjadi sediaan microspheres. Banyak faktor yang mempengaruhi hasil preparasi microspheres di antaranya adalah konsentrasi etil selulosa (EC) dan lama pengadukan yang digunakan. Penelitian ini bertujuan untuk mengetahui komposisi terbaik konsentrasi EC dan lama pengadukan yang dapat menghasilkan microspheres MH-EC dengan entrapment efficiency (EE) tertinggi menggunakan optimasi desain faktorial. MH digunakan sebagai bahan aktif, EC digunakan sebagai polimer serta non-aqueous solvent evaporation method sebagai teknik yang dipilih dalam preparasi microspheres. Hasilnya microspheres yang menggunakan konsentrasi EC sebanyak 4.500 mg dan lama pengadukan selama 2 jam menghasilkan EE sebesar 84,6 ± 0,557% dengan nilai verifikasi EE sebesar 98,1%, drug loading sebesar 12,7 ± 0,173% dan yield sebesar 95,1 ± 0,612%. Microspheres memiliki bentuk sferis dan morfologi permukaan yang relatif halus dan cerah serta ukuran partikel sebesar 173,8 ± 4,41µm. Hasil analisis FTIR menunjukkan bahwa tidak ada perubahan gugus fungsi spesifik pada MH sebagai bahan aktif. Kata kunci:    microspheres, metformin hidroklorida, etil selulosa


2021 ◽  
Author(s):  
Sadeq AL-Thamarani ◽  
Ahmed Gardouh

Objectives: The aim of this study was to design and formulate mixed polymer–lipid nanoparticles (PLNs) for the delivery of ibuprofen. Methods: The mixed PLNs were prepared by a single modified emulsification solvent evaporation method. Key findings: Core-shell-shaped mixed PLNs were successfully prepared, with sizes in the nano range (193.3 ± 0.70 to 795.8 ± 0.70 nm) and ζ potential (−26.8 ± 0.45 to −42.8 ± 0.30 mV). Entrapment efficiency ranged from 80.3 to 93.6%. Conclusions: Pharmacokinetic parameters showed great improvement in Cmax and Tmax of ibuprofen from the formulation PLNs8 compared with the respective Brufen® and pure drugs, indicating improvement in bioavailability of the drug.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Sign in / Sign up

Export Citation Format

Share Document