scholarly journals Overview of Decadal Ecosystem Changes in the Western Arabian Sea and the Occurrence of Algal Blooms

2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Paul Harrison ◽  
Sergey Piontkovski ◽  
Khalid Al-Hashmi

Gradual decadal changes have taken place in the Western Arabian Sea over the last 50 years. These changes have affected wind speeds, atmospheric and sea surface temperature, thermohaline stratification, shoaling of the oxycline, and dust/iron inputs.  A decrease in nitrate supply of the photic layer have caused an increase in annual frequency of harmful algal blooms and fish kills. Along with that, a decrease in diatom biomass and a shift from red Noctiluca to green Noctiluca during the northeast monsoon was observed during the last two decades, Even though these are the same species they have very different nutritional modes. The red one is a heterotroph with a preference for grazing diatoms, while the green one has a symbiont and thus it is a mixotroph. Recent results suggest that this shift may be caused by the shoaling oxycline since the green one grows better under low oxygen because the symbiont produces oxygen for its host. The western Arabian Sea is temporally and spatially complex. With the recent advances in remote sensing of the ocean, a further understanding of these temporal and spatial changes can be gained through analyzing frequent images with opportunistic ground-truthing.

Author(s):  
Paul Harrison ◽  
Sergey Piontkovski ◽  
Khalid Al-Hashmi

Gradual decadal changes have taken place in the Western Arabian Sea over the last 50 years. These changes have affected wind speeds, atmospheric and sea surface temperature, thermohaline stratification, shoaling of the oxycline, and dust/iron inputs.  A decrease in nitrate supply of the photic layer have caused an increase in annual frequency of harmful algal blooms and fish kills. Along with that, a decrease in diatom biomass and a shift from red Noctiluca to green Noctiluca during the northeast monsoon was observed during the last two decades, Even though these are the same species they have very different nutritional modes. The red one is a heterotroph with a preference for grazing diatoms, while the green one has a symbiont and thus it is a mixotroph. Recent results suggest that this shift may be caused by the shoaling oxycline since the green one grows better under low oxygen because the symbiont produces oxygen for its host. The western Arabian Sea is temporally and spatially complex. With the recent advances in remote sensing of the ocean, a further understanding of these temporal and spatial changes can be gained through analyzing frequent images with opportunistic ground-truthing.


2021 ◽  
Author(s):  
Sergey Piontkovski ◽  
Khalid Al Hashmi ◽  
Yuliya Zagorodnaya ◽  
Irina Serikova ◽  
Vladislav Evstigneev ◽  
...  

<p>Seasonal variability is a powerful component of the spatio-temporal dynamics of plankton communities, especially in the regions with oxygen-depleted waters. The Arabian Sea and the Black Sea are typical representatives of these regions. In both, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921, is one of the abundant plankton species which forms algal blooms. Sampling on coastal stations in the upper mixed layer by the plankton nets with the 120-140 µm mesh size was carried out in 2004-2010. Monthly data were averaged over years. A comparison of seasonal patterns of Noctiluca abundance pointed to the persistence of a bimodal seasonal cycle in both regions. The major peak was observed during spring in the Black Sea and during the winter (Northeast) monsoon in the Arabian Sea. The timing of the second (minor) peak was different over regions as well. This peak was modulated by advection of seasonally fluctuating velocity of coastal currents which transport waters enriched by nutrients by coastal upwelling. The abundance of Noctiluca of the major peak (with the concentration around 1.5*10<sup>6</sup> cells m<sup>-3</sup>) was from one to two orders as much high in the western Arabian Sea compared to the northern Black Sea. The remotely sensed chlorophyll-a concentration during the time of the major seasonal peak exhibited a fivefold difference over these regions. In terms of nutrient<sub></sub>concentration in the upper mixed layer (in particular, nitrates and silicates), a difference of about one order of magnitude was observed.</p>


Hydrobiologia ◽  
2020 ◽  
Vol 847 (21) ◽  
pp. 4503-4523 ◽  
Author(s):  
Jukka Ruuhijärvi ◽  
Tommi Malinen ◽  
Kirsi Kuoppamäki ◽  
Pasi Ala-Opas ◽  
Mika Vinni

AbstractWe studied the responses of a food web, especially fish and zooplankton, to summertime aeration, pumping of oxygen-rich epilimnetic water to the hypolimnion in Lake Vesijärvi, southern Finland. The aim of hypolimnetic aeration was to reduce internal loading of phosphorus from sediment. The population of smelt (Osmerus eperlanus L.), the main planktivore of the pelagial area, collapsed during the two 1st years of aeration due to increased temperature and low oxygen concentrations in the hypolimnion. The population recovered after the 4th year of hypolimnetic aeration, when oxygen conditions were improved. Despite elevated hypolimnetic temperature, smelt reached exceptionally high abundance, which led to a significant reduction in cladoceran body size. The density of perch (Perca fluviatilis L.) increased at first, but then decreased when the proportion of smelt and cyprinids increased. Biomasses of Daphnia decreased probably as a result of the disappearance of dark, low-oxygen deep-water refuge against fish predation and low availability of nutritionally high-quality algae. Occasionally filamentous cyanobacteria, such as turbulence tolerant Planktothrix agardhii (Gomont), were abundant, suggesting deteriorated food resources for zooplankton. The responses of food web were controversial with respect to the aim of the management, which was to prevent the occurrence of harmful algal blooms.


2016 ◽  
Vol 13 (4) ◽  
pp. 1049-1069 ◽  
Author(s):  
S. Sedigh Marvasti ◽  
A. Gnanadesikan ◽  
A. A. Bidokhti ◽  
J. P. Dunne ◽  
S. Ghader

Abstract. Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region – both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf – something that is poorly done in global models.


2014 ◽  
Vol 71 (11) ◽  
pp. 1642-1654 ◽  
Author(s):  
David F. Millie ◽  
Gary R. Weckman ◽  
Gary L. Fahnenstiel ◽  
Hunter J. Carrick ◽  
Ehsan Ardjmand ◽  
...  

Cyanobacterial harmful algal blooms (CyanoHABs), mainly composed of the genus Microcystis, occur frequently throughout the Laurentian Great Lakes. We used artificial neural networks (ANNs) involving 31 hydrological and meteorological predictors to model total phytoplankton (as chlorophyll a) and Microcystis biomass from 2009 to 2011 in western Lake Erie. Continuous ANNs provided modeled-measured correspondences (and modeling efficiencies) ranging from 0.87 to 0.97 (0.75 to 0.94) and 0.71 to 0.90 (0.45 to 0.88) for training–cross-validation and test data subsets of chlorophyll a concentrations and Microcystis biovolumes, respectively. Classification ANNs correctly assigned up to 94% of instances for Microcystis presence–absence. The influences of select predictors on phytoplankton and CyanoHAB niches were visualized using biplots and three-dimensional response surfaces. These then were used to generate mathematical expressions for the relationships between modeled CyanoHAB outcomes and the direct and interactive influences of environmental factors. Based on identified conditions (∼40 to 50 μg total phosphorus (TP)·L−1, 22 to 26 °C, and prolonged wind speeds less than ∼19 km·h−1) underlying the likelihood of occurrence and accumulation of phytoplankton and Microcystis, a “target” concentration of 30 μg TP·L−1 appears appropriate for alleviating blooms. ANNs generated robust ecological niche models for Microcystis, providing a predictive framework for quantitative visualization of nonlinear CyanoHAB–environmental interactions.


2018 ◽  
Vol 161 ◽  
pp. 20-28 ◽  
Author(s):  
P. Sathish Kumar ◽  
M. Kumaraswami ◽  
G. Durga Rao ◽  
P. Ezhilarasan ◽  
R. Sivasankar ◽  
...  

Shore & Beach ◽  
2020 ◽  
pp. 34-43
Author(s):  
Nicole Elko ◽  
Tiffany Roberts Briggs

In partnership with the U.S. Geological Survey Coastal and Marine Hazards and Resources Program (USGS CMHRP) and the U.S. Coastal Research Program (USCRP), the American Shore and Beach Preservation Association (ASBPA) has identified coastal stakeholders’ top coastal management challenges. Informed by two annual surveys, a multiple-choice online poll was conducted in 2019 to evaluate stakeholders’ most pressing problems and needs, including those they felt most ill-equipped to deal with in their day-to-day duties and which tools they most need to address these challenges. The survey also explored where users find technical information and what is missing. From these results, USGS CMHRP, USCRP, ASBPA, and other partners aim to identify research needs that will inform appropriate investments in useful science, tools, and resources to address today’s most pressing coastal challenges. The 15-question survey yielded 134 complete responses with an 80% completion rate from coastal stakeholders such as local community representatives and their industry consultants, state and federal agency representatives, and academics. Respondents from the East, Gulf, West, and Great Lakes coasts, as well as Alaska and Hawaii, were represented. Overall, the prioritized coastal management challenges identified by the survey were: Deteriorating ecosystems leading to reduced (environmental, recreational, economic, storm buffer) functionality, Increasing storminess due to climate change (i.e. more frequent and intense impacts), Coastal flooding, both Sea level rise and associated flooding (e.g. nuisance flooding, king tides), and Combined effects of rainfall and surge on urban flooding (i.e. episodic, short-term), Chronic beach erosion (i.e. high/increasing long-term erosion rates), and Coastal water quality, including harmful algal blooms (e.g. red tide, sargassum). A careful, systematic, and interdisciplinary approach should direct efforts to identify specific research needed to tackle these challenges. A notable shift in priorities from erosion to water-related challenges was recorded from respondents with organizations initially formed for beachfront management. In addition, affiliation-specific and regional responses varied, such as Floridians concern more with harmful algal blooms than any other human and ecosystem health related challenge. The most common need for additional coastal management tools and strategies related to adaptive coastal management to maintain community resilience and continuous storm barriers (dunes, structures), as the top long-term and extreme event needs, respectively. In response to questions about missing information that agencies can provide, respondents frequently mentioned up-to-date data on coastal systems and solutions to challenges as more important than additional tools.


Sign in / Sign up

Export Citation Format

Share Document