scholarly journals Two Dimensional Short Time Hartley Transforms

Author(s):  
Narasimman Sundararajan ◽  
A. Ebrahimi ◽  
Nannappa Vasudha

The Hartley transform, as in the case of the Fourier transform, is not suitably applicable to non-stationary representations of signals whose statistical properties change as a function of time. Hence, different versions of 2-D short time Hartley transforms (STHT) are given in comparison with the short time Fourier transform (STFT). Although the two different versions of STHT defined here with their inverses are equally applicable, one of them is mathematically incorrect/incompatible due to the incorrect definition of the 2-D Hartley transform in literature. These definitions of STHTs can easily be extended to multi-dimensions. Computations of the STFT and the two versions of STHTs are illustrated based on 32 channels (traces) of synthetic seismic data consisting of 256 samples in each trace. Salient features of STHTs are incorporated. 

2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1488-1495 ◽  
Author(s):  
R. Saatcilar ◽  
S. Ergintav ◽  
N. Canitez

The Hartley transform (HT) is an integral transform similar to the Fourier transform (FT). It has most of the characteristics of the FT. Several authors have shown that fast algorithms can be constructed for the fast Hartley transform (FHT) using the same structures as for the fast Fourier transform. However, the HT is a real transform and for this reason, since one complex multiplication requires four real multiplications, the discrete HT (DHT) is computationally faster than the discrete FT (DFT). Consequently, any process requiring the DFT (such as amplitude and phase spectra) can be performed faster by using the DHT. The general properties of the DHT are reviewed first, and then an attempt is made to use the FHT in some seismic data processing techniques such as one‐dimensional filtering, forward seismic modeling, and migration. The experiments show that the Hartley transform is two times faster than the Fourier transform.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mawardi Bahri ◽  
Ryuichi Ashino

A definition of the two-dimensional quaternion linear canonical transform (QLCT) is proposed. The transform is constructed by substituting the Fourier transform kernel with the quaternion Fourier transform (QFT) kernel in the definition of the classical linear canonical transform (LCT). Several useful properties of the QLCT are obtained from the properties of the QLCT kernel. Based on the convolutions and correlations of the LCT and QFT, convolution and correlation theorems associated with the QLCT are studied. An uncertainty principle for the QLCT is established. It is shown that the localization of a quaternion-valued function and the localization of the QLCT are inversely proportional and that only modulated and shifted two-dimensional Gaussian functions minimize the uncertainty.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1906-1916 ◽  
Author(s):  
Avijit Chakraborty ◽  
David Okaya

Spectral analysis is an important signal processing tool for seismic data. The transformation of a seismogram into the frequency domain is the basis for a significant number of processing algorithms and interpretive methods. However, for seismograms whose frequency content vary with time, a simple 1-D (Fourier) frequency transformation is not sufficient. Improved spectral decomposition in frequency‐time (FT) space is provided by the sliding window (short time) Fourier transform, although this method suffers from the time‐ frequency resolution limitation. Recently developed transforms based on the new mathematical field of wavelet analysis bypass this resolution limitation and offer superior spectral decomposition. The continuous wavelet transform with its scale‐translation plane is conceptually best understood when contrasted to a short time Fourier transform. The discrete wavelet transform and matching pursuit algorithm are alternative wavelet transforms that map a seismogram into FT space. Decomposition into FT space of synthetic and calibrated explosive‐source seismic data suggest that the matching pursuit algorithm provides excellent spectral localization, and reflections, direct and surface waves, and artifact energy are clearly identifiable. Wavelet‐based transformations offer new opportunities for improved processing algorithms and spectral interpretation methods.


1999 ◽  
Vol 42 (3) ◽  
Author(s):  
T. Bartosch ◽  
D. Seidl

Among a variety of spectrogram methods Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.


Geophysics ◽  
1994 ◽  
Vol 59 (7) ◽  
pp. 1150-1155 ◽  
Author(s):  
N. L. Mohan ◽  
L. Anand Babu

In recent years the application of the Hartley transform, originally introduced by Hartley (1942), has gained importance in seismic signal processing and interpretation (Saatcilar et al., 1990, 1992). The Hartley transform is similar to the Fourier transform but is computationally much faster than even the fast Fourier transform (Bracewell, 1983; Bracewell et al., 1986; Sorensen et al., 1985; Pei and Wu, 1985; Duhamel and Vetterli, 1987; Zhou, 1992). Surprisingly, we have not seen a clear definition of the 2-D Hartley transform in the published literature.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. V143-V167 ◽  
Author(s):  
Charles I. Puryear ◽  
Oleg N. Portniaguine ◽  
Carlos M. Cobos ◽  
John P. Castagna

An inversion-based algorithm for computing the time-frequency analysis of reflection seismograms using constrained least-squares spectral analysis is formulated and applied to modeled seismic waveforms and real seismic data. The Fourier series coefficients are computed as a function of time directly by inverting a basis of truncated sinusoidal kernels for a moving time window. The method resulted in spectra that have reduced window smearing for a given window length relative to the discrete Fourier transform irrespective of window shape, and a time-frequency analysis with a combination of time and frequency resolution that is superior to the short time Fourier transform and the continuous wavelet transform. The reduction in spectral smoothing enables better determination of the spectral characteristics of interfering reflections within a short window. The degree of resolution improvement relative to the short time Fourier transform increases as window length decreases. As compared with the continuous wavelet transform, the method has greatly improved temporal resolution, particularly at low frequencies.


Sign in / Sign up

Export Citation Format

Share Document