scholarly journals La situación actual del sistema de monitoreo ambiental en la Zona Metropolitana de la Ciudad de México / The Current Status of Environmental Monitoring in the Mexico City Metropolitan Zone

2009 ◽  
Vol 24 (3) ◽  
pp. 513 ◽  
Author(s):  
María Perevochtchikova

Se ha visto que sin un sistema de monitoreo ambiental integral y eficiente, que propor­cione datos duros de soporte para un diagnóstico de la situación ambiental, no es posible elaborar nuevas políticas públicas para resolver la problemática que enfrentan las áreas urbanas. En el presente trabajo se revisa la situación actual del sistema de monitoreo ambiental de la Zona Metropolitana de la Ciudad de México desde tres ángulos: climatológico, hidrométrico y de calidad de aire. Asimismo se detectan sus principales avances, limitaciones y otras particularidades y al final se complementa el monitoreo ambiental con la parte social y económica. AbstractIt has been proved that without an efficient, integral environmental monitoring system that provides hard back-up data for a diagnosis of the environmental situation, it is impossible to draw up new public policies to solve the problem faced by urban areas. This paper reviews the current status of environmental monitoring in the Mexico City Metropolitan Zone from three angles: climatological, hydrometric and air quality. It also detects the main progress, limitations and other particularities and at the end, environmental monitoring is complemented by the social and economic part.

2018 ◽  
Vol 9 (3-4) ◽  
pp. 31
Author(s):  
Mohammed Abdelrhman ◽  
Ahmed Balkis ◽  
Ali-Abou Ahmed ElNour ◽  
Mohammed Tarique

This paper presents a reliable and low cost environmental monitoring system. The system uses an Unmanned Ariel Vehicle (UAV) equipped with a set of sensors, microcontroller, wireless system, and other accessories. The system consists of two systems namely air quality monitoring system and water quality monitoring system. The air quality monitoring system consists of a set of gas sensors and microcontroller. This system measures the concentration of greenhouse gases at different altitudes under different environmental conditions. On the other hand, the water quality monitoring system consists of a set of water quality sensors, microcontroller, and water sampling unit. This system collects water samples from off-shore and on-shore water sources and measures water quality parameters. The present system is capable of recording the measured data in an onboard SD card. It is also able to send data to a ground monitoring unit through a wireless system. To ensure reliability in measurement the sensors are calibrated before deployment. Finally, the system is upgradable and reconfigurable. The system has been tested to measure air and water quality at different local areas. Some these measured data are also presented in this paper.


Author(s):  
I. V. May ◽  
A. A. Kokoulina ◽  
S. Yu. Balashov

Introduction. The city of Chita of Zabaikalsky region is one of the cities of Russia, priority on level of pollution of atmosphere. Of the order of 130 impurities emitted by the sources of the city, 12 are monitored at 5 posts of the Roshydromet network. Maximum monthly average concentrations are formed by benz (a) pyrene (up to 56.8 MPC), hydrogen sulfide (12.3 MPC), suspended particles (up to 4PDC), phenol (up to 3.6 MPC). Significant emissions (59.73 thousand tons in 2018) are aggravated by the use of coal as a fuel by heat and power enterprises and the private sector, climatic and geographical features. Within the framework of the Federal project “Clean Air” of the national project “Ecology”, it is envisaged to reduce the gross emission of pollutants into the atmosphere of Chita by 8.75 thousand tons by 2024, which should lead to a significant improvement in the safety and quality of life of citizens. It is necessary to identify the most “risky “components of pollution for health.It is important to understand: whether the environmental monitoring system reflects the real picture of the dangers posed by pollution of the city’s atmosphere; whether there is a need to optimize the monitoring system for the subsequent assessment of the effectiveness and efficiency of measures; what impurities and at what points should be monitored in the interests of the population, administration and economic entities implementing air protection measures.The aim of the study is to develop recommendations for optimizing the program of environmental monitoring of air quality in the city of Chita, taking into account the criteria of danger to public health for the subsequent evaluation of the effectiveness and effectiveness of the Federal project “Clean Air”.Materials and methods. Justification of optimization of monitoring programs was carried out through the calculation of hazard indices, considering: the mass of emissions and toxicological characteristics of each chemical; the population under the influence. A vector map of the city with a layer “population density” was used as a topographic base. The indices were calculated for regular grid cells covering the residential area. For each cell, the repeatability of winds of 8 points from the priority enterprises and the population within the calculated cell were taken into account. As a result, each calculation cell was characterized by a total coefficient, taking into account the danger of potential impacts of emissions. Based on the results of the assessments, recommendations were formulated to optimize the placement of posts in the city and the formation of monitoring programs.Results. Indices of carcinogenic danger to the health of the population of Chita ranged from 584,805. 96 to 0.03 (priorities: carbon (soot), benzene, benz (a) pyrene); indices of non-carcinogenic danger — from 1,443,558. 24 to 0.00 (priorities: sulfur dioxide, inorganic dust containing 70–20% SiO2, fuel oil ash). The greatest danger to public health stationary sources of emissions form in the North-Western, Western and South-Eastern parts of the city. Roshydromet posts in these zones are absent.Conclusions. As part of the objectives of the project “Clean Air”, it is recommended to Supplement the existing state network of observations of atmospheric air quality in Chita with two posts; to include manganese, xylene, vanadium pentoxide in the monitoring programs, to carry out the determination of Benz(a)pyrene et all posts, which will allow to fully and adequately assess the danger of emissions of economic entities, as well as the effectiveness and efficiency of the provided air protection measures.


2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


2013 ◽  
Vol 791-793 ◽  
pp. 870-873
Author(s):  
Zhong Hui Yin ◽  
Bin Hui Zhang ◽  
An Ning Zhang ◽  
Zi Long Jing ◽  
Yu Ming Gu

In order to protect the components of monitoring, some measures should be taken when refuge chamber uses outside environmental monitoring system. This paper designs a kind of protective device for outside environmental monitoring system based on related theory analysis and coal mine environment. It can protect monitoring components from gas explosion shock wave. Meantime there is good contact between sensitive element and outside environment to guarantee the normal work of the monitoring system. Finally, this paper builds the model of protective device, and analyses its structural strength.


2017 ◽  
Vol 13 (08) ◽  
pp. 4
Author(s):  
Yong Jin ◽  
Zhenjiang Qian ◽  
Xiaoshuang Xing ◽  
Lu Shen

ensor nodes vulnerable becomes a major bottleneck restricting the wide application of wireless sensor networks WSNs (Wireless Sensor Networks). In order to satisfy the needs of industrial production and daily living environment monitoring, it is important to improve the survivability of wireless sensor networks in environmental monitoring application. In order to have a reliable environment monitoring system, this paper analyzed the damage types and causes of WSNs and the measurement methods of WSNs survivability. Then, we studied the fault detection method and finally realized the design can improve the survivability of the scheme. The robust guarantee scheme through hardware design and algorithm model, realized the remote wireless communication services and prolonged the network life cycle, so as to improve the survivability of the environmental monitoring system.


Sign in / Sign up

Export Citation Format

Share Document