scholarly journals A Novel Approach for Thermal Designing a Single Pass Counter Flow Shell and Tube Heat Exchanger

Author(s):  
E. Ouardi et al., E. Ouardi et al., ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 69-75
Author(s):  
Taiwo O. Oni ◽  
Ayotunde A. Ojo ◽  
Daniel C. Uguru-Okorie ◽  
David O. Akindele

A shell-and-tube heat exchanger which was subjected to different flow configurations, viz. counter flow, and parallel flow, was investigated. Each of the flow configurations was operated under two different conditions of the shell, that is, an uninsulated shell and a shell insulated with fiber glass. The hot water inlet temperature of the tube was reduced gradually from 60 oC to 40 oC, and performance evaluation of the heat exchanger was carried out. It was found that for the uninsulated shell, the heat transfer effectiveness for hot water inlet temperature of 60, 55, 50, 45, and 40 oC are 0.243, 0.244, 0.240, 0.240, and 0.247, respectively, for the parallel flow arrangement. For the counter flow arrangement, the heat transfer effectiveness for the uninsulated shell are 2.40, 2.74, 5.00, 4.17, and 2.70%, respectively, higher than those for the parallel flow. The heat exchanger’s heat transfer effectiveness with fiber-glass-insulated shell for the parallel flow condition with tube hot water inlet temperatures of 60, 55, 50, 45, and 40 oC are 0.223, 0.226, 0.220, 0.225, and 0.227, respectively, whereas the counter flow condition has its heat transfer effectiveness increased by 1.28, 1.47, 1.82, 1.11, and 1.18%, respectively, over those of the parallel flow.


2020 ◽  
Author(s):  
sreejesh S R chandran ◽  
Debabrata Barik ◽  
ANSALAM RAJ T G ◽  
Reby ROY

Abstract Nanofluids are generally utilized in providing cooling, lubrication phenomenon, controlling the thermophysical properties of the working fluid. In this work, nanoparticles of Al2O3 are added to the base fluid which flows through the counter flow arrangement in a turbulent flow condition. The hot and cold fluids used are ethylbenzene and water respectively and have different velocities on both shell and tube side. This study emphasizes the analysis of flow properties, friction loss, and energy transfer in terms of heat using nanofluid in the heat exchanger. The heat transfer rate of present investigation with nanoparticle addition is 4.63% higher in comparision to Dittus Boelter correlation. Apart from this, the obtained friction factor is 0.0376 very much closer to Gnielinski and Blasius correlations. This investigation proved that appropriate nanoparticle additions and baffle inclinations have fabulous impact upon the performance of heat exchanger and its effectiveness.


2021 ◽  
pp. 77-77
Author(s):  
Sakthivel Perumal ◽  
Dinesh Sundaresan ◽  
Rajkumar Sivanraju ◽  
Nega Tesfie ◽  
Kamalakannan Ramalingam ◽  
...  

In this research aimed to estimate the Overall heat transfer coefficient of counter flow Shell and Tube heat exchanger. Heat transfer is the phenomenon to analysis of heat transfer from one medium of fluid to another medium of fluid, it is considered as a major role in industrial applications. Numerous heat exchangers are available, in this research considered as shell and tube heat exchanger. Overall Heat Transfer Coefficient (OHTC) informed that three major factors are influenced as passing of fluid (film) media coefficient inside the tubes, circulating of fluid (film) media coefficient over in the shell and the resistance of wall made on metal. In this study Taguchi L9 Orthogonal array is executed to found the overall heat transfer coefficient with effective process parameters. Three major parameters are considered for this work are coil diameter (25 mm, 30 mm and 35 mm), Baffle thickness (15 mm, 20 mm and 25 mm) and Baffle gap (200 mm, 300 mm and 400 mm. Baffle plate thickness is highly significant factor for this experiment.


Author(s):  
N.D Shirgire ◽  
◽  
S.S Bhansali ◽  
A.R Bhagat ◽  
A.G Padgelwar ◽  
...  

Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in a balanced counter flow heat exchanger. It is shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. Remarkably, the functional dependence of the efficiency of these heat exchangers on this parameter is identical to that of a constant area fin with an insulated tip. Also a general algebraic expression as well as a generalized chart is presented for the determination of the efficiency of shell and tube heat exchangers with any number of shells and even number of tube passes per shell, when the Number of Transfer Units (NTU) and the capacity ratio are known. Although this general expression is a function of the number of shells and another nondimensional group, it turns out to be almost independent of the number of shells over a wide range of practical interest. The same general expression is also applicable to parallel and counter flow heat exchangers.


2021 ◽  
Vol 16 ◽  
pp. 145-152
Author(s):  
Farid Ahmed ◽  
Md Minaruzzaman Sumon ◽  
Muhtasim Fuad ◽  
Ravi Gugulothu ◽  
AS Mollah

Heat exchangers are almost used in every industry. Among them, shell and tube heat exchangers are covering around 32% of the total heat exchanger. Numerical simulation of the Computational models is playing an important role for the prototypes including the Heat Exchanger Models for the improvement in modeling. In this study, the CFD analysis of parallel and counter flow shell and tube heat exchanger was performed. Following project, looked into the several aspects and these are the temperature, velocity, and pressure drop and turbulence kinetic energy along with the heat exchanger length. Hot water was placed in tube side and cold water was placed in shell side of the heat exchanger. Shell side cold temperature was increasing along the heat exchanger length. On the other side, tube side hot water temperature was decreasing along the tube length. This effect was more significance in counter flow rather than the parallel flow. Velocity was more fluctuating in the shell side due to presence of the baffles. Also following the same reason, pressure drop was higher in the shell side cold water rather than the tube side hot water. To measure the turbulence effect, turbulence kinetic energy was determined. Turbulence was decreasing first part of the shell and tube heat exchanger. But, it was increasing along through the rest part heat exchanger. All these observations and the outcomes are evaluated and then further analyzed


Sign in / Sign up

Export Citation Format

Share Document