Improvement of sausage products technology using protein-fat emulsion based on chicken fat

Author(s):  
V. Pasichnyi ◽  
О. Haschuk ◽  
O. Moskalyuk ◽  
A. Huralevych
Keyword(s):  
Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Watson ◽  
P.G Green ◽  
S Neubauer ◽  
O.J Rider

Abstract Introduction The failing heart is starved of energy, in part accounting for its contractile dysfunction. Reduced uptake of fat and sugar required for energy production has frequently been demonstrated in heart failure, therefore altering metabolism of glucose and/or fat is therefore attractive as a therapy. We hypothesized increasing glucose supply would be beneficial over increasing fat supply so measured ATP usage (via PCr/ATP ratio and flux through creatine kinase) and cardiac function during fat emulsion infusion or euglycaemic hyperinsulinaemic clamp. Methods 11 patients with a diagnosis of heart failure and nonischaemic cardiomyopathy were recruited, mean age 66 (range 49–80), mean BMI 27.7 (range 21.3–37.5), F:M 3:8, 3 diabetic and 8 non-diabetic. On the first visit they had a baseline cardiac magnetic resonance (CMR), collecting cardiac volumes and function, then were randomised to receive either fat infusion or euglycaemic clamp. Following an hour of infusion, CMR was repeated followed by 31P cardiac magnetic resonance spectroscopy, then a dobutamine stress sequence at 65% maximum heart rate. They received the alternate infusion at the next visit. Results Data was normally distributed. Baseline ejection fraction was 37±9%. PCr/ATP ratio was greater with the fat infusion compared to euglycaemic clamp (1.82±0.26 vs 1.68±0.24, p=0.04). Fat emulsion infusion also brought about a greater ejection fraction increase over the baseline, compared to the euglycaemic clamp in which there was little difference (+5.3±5.3% vs −0.6±3.1%, p=0.004). Calculated cardiac work was greater in the fat infusion group than the Insulin/glucose group (682±156 L.mmHg/min vs 581±85 L.mmHg/min, p=0.009). There was no significant difference in creatine kinase first order rate constant (fat infusion 0.2±0.09/s vs euglycaemic clamp 0.16±0.07/s, p=0.32) nor creatine kinase flux (fat infusion 1.85±0.92 μmol/g/s vs euglycaemic clamp 1.46±0.58 μmol/g/s, p=0.22). The increment in cardiac output on stress over baseline was not significantly different between arms (fat infusion +3.39±3.07 L/min vs euglycaemic clamp +3.08±2.57 L/min, p=0.42). The PCr/ATP ratio showed positive correlation with the stress ejection fraction (R2=0.656, p=0.001), but not with resting ejection fraction. Conclusions Increased supply of fat to the myocardium brought about improved contractility and cardiac energetics compared to an increased glucose supply. The increase in PCr/ATP ratio would imply (given ATP concentrations are kept constant in the myocardium) there is a greater availability of phosphocreatine, suggesting increased mitochondrial ATP synthesis. These results were unexpected as it has traditionally been thought that increased glucose metabolism would yield greater cardiac function in the failing heart. These data suggest targeting myocardial fat metabolism may provide novel treatments for cardiac dysfunction. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): British Heart Foundation


2007 ◽  
Vol 54 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Zheng-Wei Ma ◽  
Li-Dong Liu ◽  
Kun Li ◽  
Yu-Jun Zhang ◽  
Jia-Hong Dong

1999 ◽  
Vol 22 (5) ◽  
pp. 539-542
Author(s):  
Yuji KUROSAKI ◽  
Tomoya ASADA ◽  
Nanae YASUMOTO ◽  
Toshiaki NAKAMURA ◽  
Mikio MASADA ◽  
...  

2011 ◽  
Vol 4 (1) ◽  
pp. 58-66
Author(s):  
Douglas Drenckpohl ◽  
Matthew Niehaus ◽  
Catherine Schneider ◽  
Connie McConnell ◽  
Huaping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document