scholarly journals Mugwort pollen season in the air of Poland in 2019

Alergoprofil ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 23-28
Author(s):  
Małgorzata Puc ◽  
Piotr Rapiejko ◽  
Agnieszka Lipiec ◽  
Małgorzata Malkiewicz ◽  
Katarzyna Dąbrowska-Zapart ◽  
...  

  The Asteraceae family is one of the largest families, comprising 67 genera and 264 species in Poland. However, only a few genera, including Artemisia, are potential allergenic sources. The aim of the study was to compare the mugwort pollen seasons in Bialystok, Bydgoszcz, Sosnowiec, Lublin, Piotrkow Trybunalski, Opole, Olsztyn, Szczecin, Warsaw and Wroclaw in 2019. The investigations were carried out using the volumetric method. Seasonal Pollen Index was estimated as the sum of daily average pollen concentrations in the given season. The mugwort pollen season is mainly observed in June, July and at the beginning of September. In 2019 the pollen season of mugwort started first in Opole, on the June 26th. At the latest, a pollen season ended in Bydgoszcz and Warsaw, at the end of September. The differences of pollen seasons duration were extremely considerable, from 35 to 83 days. The highest airborne concentration of 97 pollen grains/m3 was noted in Lublin on the July 31st. The maximum values of seasonal pollen count in Polish cities occurred between July 28th and August 12th, most often between in late July and early August. The highest mugwort pollen allergen hazard occurred in 2019 in Lublin, Warsaw, Opole and Wroclaw, and was 2–3 times higher than in other cities. The highest variability in the analysed seasons was found in start date, while the lowest in the peak value and SPI value. In the pollen season in 2019, 2 peaks of Artemisia pollen concentrations were observed as a result of the order of flowering of A. vulgaris and A. campestris. Information on the pollination of various Artemisia species will be used to avoid excessive exposure to allergens of these pollen grains.

Alergoprofil ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 17-22
Author(s):  
Małgorzata Puc ◽  
Daniel Kotrych ◽  
Agnieszka Lipiec ◽  
Kazimiera Chłopek ◽  
Dariusz Jurkiewicz ◽  
...  

Pollen grains are one of the most important groups of atmospheric biological particles that cause allergic processes. Meteorological factors affect the occurrence of pollen allergen release in the air. In order to shed light on this phenomenon this study compares the ash pollen seasons in Bialystok, Bydgoszcz, Sosnowiec, Piotrkow Trybunalski, Opole, Olsztyn, Szczecin, Warsaw and Lublin in 2019. The investigations were carried out using the volumetric method (Hirst type pollen sampler). Seasonal Pollen Index (SPI) was estimated as the sum of daily average pollen concentrations in the given season. The ash pollination is mainly observed in April. Diagnosis of ash pollen allergy is made difficult due to an overlapping pollination period with Betulaceae and some cross-reactivity with allergens from Betulaceae. It is not clear whether ash pollen is a primary cause of sensitization or whether it is implicated through cross-sensitization to other pollens. In 2019 the pollen season of ash started first in Opole, on the March 9th. At the latest, a pollen season ended in Bialystok, after mid may. The differences of pollen seasons duration were very considerable, from 28 to 50 days. The highest airborne concentration of 190 pollen grains/m3 was noted in Lublin on the April 21st. The maximum values of seasonal pollen count in Polish cities occurred between April 4th and 22nd, most often between April 18th–22nd. The highest ash pollen allergen hazard occurred in 2019 in Lublin, Warsaw, Piotrkow Trybunalski and Bydgoszcz, and was at least three times higher than in other cities. The highest variability in the analysed seasons was found in the peak value and annual total.


Alergoprofil ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 15-20
Author(s):  
Małgorzata Puc ◽  
Donát Magyar ◽  
Orsolya Udvardy ◽  
Agnieszka Lipiec ◽  
Piotr Rapiejko ◽  
...  

 Allergic diseases are considered as important human health issues as they substantially restrict many allergic people. Trees such as the plane tree can pose a certain threat to allergy sufferers. Due to the frequent planting of these trees in large cities, their pollen can affect the increase in the frequency of local allergy symptoms. This study compares the plane tree pollen seasons in Poland, in Bialystok, Bydgoszcz, Warsaw, Zielona Gora, Piotrkow Trybunalski, Opole, Olsztyn, Szczecin and in Hungary, in Budapest, Debrecen, Gyor, Kaposvar, Kecskemet, Miskolc, Nyiregyhaza and Pecs in 2019. The investigations were carried out using the volumetric method (Hirst type pollen sampler). Seasonal Pollen Index (SPI) was estimated as the sum of daily average pollen concentrations in the given season. The season ranges from March to May, depending on the geographical latitude. Diagnosis of plane tree pollen allergy is made difficult due to some cross-reactivity with birch, but also alder, hazel, hornbeam, oak, beech, sweet chestnut, and to some extent with grass pollen. In 2019 the pollen season of Platanus started first in Hungary, in Pecs on the April 1st; in Poland the pollen season started in Szczecin and Zielona Gora on the April 4th. At the latest, a pollen season ended in Poland, in Warsaw and Bydgoszcz until May 11th–12th, similarly in Hungary – until May 11th in Budapest and Kaposvar. The differences of pollen seasons duration were very considerable, from 15 to 40 days. Also the differences of the highest airborne concentration especially between both countries were extremely considerable (2105 pollen grains/m3 in Nyíregyháza and 3 pollen grains/m3 in Białystok. The maximum values of seasonal pollen count in Polish cities occurred between April 24th and May 1st, and in Hungarian cities between April 9th and 16th. The highest plane tree pollen allergen hazard occurred in 2019 undoubtedly in Hungary: in Pecs, Kaposvar and Nyiregyhaza, and was ten times higher than in Poland. The highest variability in the analysed seasons was found in the peak value and annual total.


Alergoprofil ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 18-25 ◽  
Author(s):  
Małgorzata Puc ◽  
Piotr Rapiejko ◽  
Donát Magyar ◽  
Orsolya Udvardy ◽  
Jana Ščevková ◽  
...  

Almost all the species of the Chenopodiaceae family present in our flora flower from July–August to the autumn. Unfortunately, allergies do not take a vacation. Warm, dry July and August weather should limit pollen emissions. However, similarly to most plants in dry habitats, goosefoot are well adapted to such conditions and does not provide even a short reprieve to pollen allergic patients. However, goosefoot pollen does not have a very large allergenic significance; despite the long pollen season lasting about 3 months, pollen concentrations in the air are low and very rarely exceed the concentration of 30 grains/m3. This study compares Chenopodiaceae pollen seasons in Poland, Hungary and Slovakia in 2019. The investigations were carried out using the volumetric method (Hirst type pollen sampler). Seasonal pollen index was estimated as the sum of daily average pollen concentrations in the given season. The pollen season ranges from June to September, depending on the geographical latitude. In Hungary and Slovakia there are much longer pollen seasons than in Poland. Pollen of goosefoot family contains the panallergen profilins, which are responsible for cross-reactivity among pollen-sensitized patients. In 2019 the pollen season of goosefoot started first in Hungary, in Kaposvar on June 7th and in Slovakia, in Žilina, on June 8th; in Poland pollen season started much later, on June 14th in Szczecin and Opole. At the latest, a pollen season ended in Nitria (Slovakia) on October 16th; in Kecskemet (Hungary) on October 3rd. In Poland the season ended much earlier than in Hungary and Slovakia already on August 25th. The differences of pollen season durations are considerable, the number of days ranged from 72 to 128. The dynamics of the pollen seasons of goosefoot family show similarities within a given country and considerable differences between these countries. However, the differences of the highest airborne concentration between the countries are not considerable (25 pollen grains/m3 in Poland, 49 pollen grains/m3 in Hungary, and 30 pollen grains/m3 in Slovakia. The maximum values of seasonal pollen count in Polish cities occurred between July 26th and August 29th, in Hungarian cities between August 27th and 30th, and in Slovakian cities between August 7th and 28th. Pollen season was characterized by extremely different total annual pollen SPI, in Poland from 116 to 360; in Hungary and Slovakia within the limits 290 to 980. Droughts that occur more frequently during the summer facilitate the spread of species of the goosefoot family due to the possibility of these plants gaining new habitats.


2015 ◽  
Vol 68 (4) ◽  
pp. 325-331 ◽  
Author(s):  
Aleksandra Kruczek ◽  
Małgorzata Puc ◽  
Alina Stacewicz ◽  
Tomasz Wolski

The aim of the study was to investigate the concentration of <em>Alnus</em> L., <em>Corylus</em> L. and <em>Betula</em> L. pollen in the village of Gudowo (Western Pomerania, Poland) in the years 2012–2014 in order to estimate the threat of allergenic tree pollen in this rural region. Measurements were performed using the volumetric method (VPPS Lanzoni 2000 pollen sampler). The duration of the pollen season was determined by the 98% method, taking days on which, respectively, 1% and 99% of the annual total pollen grains appeared as the beginning and end of the season. Pollen grains from hazel occurred in the air as the first ones, before pollen grains from alder and birch. The earliest beginning of the hazel pollen season was recorded in 2012, whereas alder and birch pollen seasons started the earliest in 2014. Daily maximum pollen concentrations of the investigated taxa were recorded in 2014. Birch pollen allergens posed the largest threat to pollinosis sufferers. In the years 2012–2014, pollen concentrations equal or higher than threshold values, at which people with pollinosis show allergic symptoms, were recorded most frequently for birch, hazel, and alder (25, 19, and 14 days, respectively). The highest hourly alder pollen concentration was recorded at 16:00 and in the case of hazel at 15:00. The diurnal distribution of birch pollen concentrations does not show any distinct peaks.


Aerobiologia ◽  
2021 ◽  
Author(s):  
Katarzyna Dąbrowska-Zapart ◽  
Tadeusz Niedźwiedź

AbstractThe study's main objective was to specify the extent to which weather conditions were related to the course of birch pollen seasons in the years 1997–2020. The impact of atmospheric conditions on the daily concentrations of birch pollen grains, the Annual pollen integral (APIn), and the length of pollen seasons were studied. The dependency between each meteorological condition and various features of the birch pollen season was determined using Spearman’s rho correlation, the Kruskal–Wallis test, and cluster analysis with the k-means method. It has been shown that the duration of sunshine and average air temperature occurring within 14 days preceding the season has the most significant influence on the beginning of a birch pollen season. The value of daily birch pollen concentrations in Sosnowiec showed a statistically significant positive correlation with the duration of sunlight and the average and maximum wind speed. The daily concentration also depended on the synoptic situation: the mass airflow direction, the type of air mass inflow, and the type of weather front. The near-ground temperature influenced the APIn of birch pollen grains during the period of 14 days before the beginning of the season and the meteorological conditions occurring in the summer of the preceding year such as the maximum temperature, duration of sunlight, the maximum and average wind speed, and the relative air humidity. It was concluded that the length of birch pollen seasons decreased year by year.


2012 ◽  
Vol 65 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Krystyna Piotrowska

The aim of the present study was to analyse the <i>Rumex</i> pollen season dynamics in Lublin in 2001-2010 and to find relationships between season parameters and meteorological conditions. This study was carried out by the volumetric method using a Lanzoni VPPS 2000 trap. The start and end dates of each season were determined based on the 98% method. The effects of meteorological factors on the <i>Rumex</i> pollen seasons were analysed by employing Spearman’s correlation test. On average, the sorrel pollen season started on 13 May (±7 days), ended on 7 September (±6 days), and lasted nearly four months (±9 days). The highest pollen concentrations were recorded in June and July. A significantly negative correlation was found between season duration and Seasonal Pollen Index (SPI). During shorter pollen seasons, higher pollen counts were recorded. In all study years, the seasons were right-skewed. The pollen concentration was most strongly correlated with humidity and mean air temperature. The season parameters (onset, end, peak date, peak value, SPI value) were primarily dependent on air temperature before and during the pollen season.


Alergoprofil ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 27-33
Author(s):  
Krystyna Piotrowska-Weryszko ◽  
Elżbieta Weryszko-Chmielewska ◽  
Aneta Sulborska ◽  
Agata Konarska ◽  
Agnieszka Lipiec ◽  
...  

In central Europe, mugwort pollen is a frequent cause of pollen allergy. Poland is one of the countries with the highest airborne concentrations of pollen of this taxon. Due to its high allergenic potential, Artemisia pollen may pose a significant threat to sensitive subjects during summer months. Plants from this genus often grow in urban and suburban areas.             The aim of the study was to compare mugwort pollen seasons and concentrations of airborne pollen of these plants in 12 cities located in different regions of Poland: Bialystok, Bydgoszcz, Cracow, Lublin, Olsztyn, Opole, Piotrkow Trybunalski, Sosnowiec, Szczecin, Warsaw, Wroclaw, and Zielona Gora. The investigations were carried out with the volumetric method using a Hirst-type pollen sampler (Lanzoni or Burkard) operating on a 24-hour basis. The duration of the pollen season was determined with the 98% method. The earliest onset of the mugwort pollen season was noted in Opole (12.07), and the latest beginning was recorded in Cracow and Sosnowiec (23.07). The maximum pollen concentrations were reported on August 7 and 8 in Lublin (177 P/m3) and Wroclaw (100 P/m3). In all the cities, peak days were recorded on the first ten days of August. The maximum pollen concentrations in the other cities were in the range of 18-89 P/m3. The highest annual pollen sum was recorded in Lublin (1423) and Wroclaw (1050). These values coincided with the highest pollen concentrations determined in these cities. The annual Artemisia pollen sums in 2020 did not have the highest values in comparison with other years in these cities. The average annual pollen sum in the five-year period of 2001-2005 was estimated at 2065 in Lublin and 1662 in Wrocław. Therefore, it can be concluded that the risk of mugwort pollen allergy in the pollen season 2020 was lower than in some previous years.


2012 ◽  
Vol 60 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Dorota Myszkowska ◽  
Bartosz Jenner ◽  
Katarzyna Cywa ◽  
Monika Kuropatwa ◽  
Danuta Stępalska ◽  
...  

The aim of the study was to compare the dynamics of pollen seasons of selected tree and shrub taxa among measurement sites in Kraków and its neighbourhood. The study was performed in Kraków and Piotrkowice Małe in 2002, as well as in Kraków and Giebułtów in 2006. During the study the volumetric method was applied and pollen grains were counted along four horizontal lines. The lowest percentage of <i>Corylus</i> pollen and the highest percentage of <i>Betula</i> pollen were found in the analysed sites. The differences among start dates in various measurement sites in a given year were inconsiderable. Statistically signifi cant differences of SPI values for the majority of taxa were found between measurement sites and between seasons for Kraków. The pollen season dynamics showed one (<i>Betula</i>, <i>Pinaceae</i>) or more maximum values (<i>Corylus</i>, <i>Populus</i>, <i>Fraxinus</i>, <i>Salix</i>). The occurrence of many peaks could be explained by the appearance of several species within one genus in the studied area or by various weather conditions. In 2002 maximum pollen concentrations were recorded earlier than in 2006. The differences in these dates could be explained better by cumulative temperature >5℃ than >0℃.


2012 ◽  
Vol 59 (2) ◽  
pp. 131-141
Author(s):  
Elżbieta Weryszko-Chmielewska ◽  
W. Zwolan ◽  
T. Wolski ◽  
T. Baj

<i>Xanthium strumarium</i> (common cocklebur) pollen grains are included in allergenic types. During a three-year study (2003-2005) conducted by using the gravimetric method at two trap sites in Lublin, daily concentrations, maximum concentrations and annual sums of pollen grains, as well as the length of pollen seasons of this species were compared. The pollen season of common cocklebur starts in the first or second decade of July and lasts until the third decade of September. The length of the pollen season is 70-80 days. The highest cocklebur pollen concentrations, amounting to 40-59 z·cm<sup>-2</sup>, occurred between 8 and 18 August. The maximum cocklebur pollen concentrations differed slightly in particular trap sites over the period of three years of study. A statistically significant correlation between the <i>Xanthium strumarium</i> pollen concentration and average temperature was demonstrated only in one year of study (2004).


2012 ◽  
Vol 63 (2) ◽  
pp. 97-103
Author(s):  
Małgorzata Malkiewicz ◽  
Kamilla Klaczak

This paper presents the results of an analysis of pollen season patterns for taxa which show the strongest allergenic activity (alder, birch, grasses, and mugwort) in 2008 in the air over Wrocław and Olszanica. The study was carried out using the volumetric method (Burkard trap). The results show variation in pollen seasons between the analyzed localities. An attempt was made to find out in which of the sites in question - the urban site or the rural one - there was a greater risk of allergens of the selected plants. The results of the present study show that the alder, birch and grass pollen seasons in 2008 started and ended earlier in Wrocław, and maximum pollen concentrations were definitely lower. But the mugwort pollen season started earlier and ended much later in Olszanica, while maximum pollen concentration of this taxon was more than twice lower than in Wrocław. In 2008 in the investigated localities, the highest pollen concentrations of the plants in question occurred in the following months: alder in February, birch in April, grasses in June, while mugwort in August. In 2008 alder and birch pollen allergen risk was comparable in the investigated urban and rural environment. However, grass and mugwort pollen allergens posed a significantly greater threat in the rural environment than in Wrocław.


Sign in / Sign up

Export Citation Format

Share Document