scholarly journals C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment

Author(s):  
M. Abd Elkodous ◽  
(Dr.) Ahmed Hassaan ◽  
Prof (Dr.) KAUSHIK PAL ◽  
(Dr.) A I Ghoneim ◽  
(Dr.) Zizi Abdeen

Synthesis of macro-mesoporous Titania (Titanium dioxide-TiO2) nanospheres was successfully achieved using a modified template-free methodology to incorporate macroporous channels into a mesoporous TiO2 framework to form mixed macro-mesoporous TiO2 spheres (MMPT), which were doped with carbon dots (C-dots) to form improved nanocomposites (C-dots@MMPT). Elemental composition, surface bonding and optical properties of these nanocomposites were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and ultraviolet-visible absorption spectroscopy (UV-VIS). Evaluation of photocatalytic activity for each (C-Dots@MMPT) sample was performed via degrading the Methylene Blue (MB) dye compared with bare samples (MMPT) under visible light irradiation using 300 Watt halogen lamp.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7286
Author(s):  
Raghav Muralidharan ◽  
Karthick Subbiah ◽  
Taejoon Park ◽  
Han-Seung Lee

An attempt has been made on a constructive approach to evaluate the performance of snail shell ash (SSA) for its corrosion performance under marine environments. Corrosion performance of steel rebar in chloride-contaminated SSA with (0% to 50%) replacement levels of cement extract medium was examined through electrochemical and weight loss techniques. Initially, snail shell powder (SSP) is made by pulverizing and subsequently SSA is by thermal decomposition methods. Both SSP and SSA were characterized by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, and energy dispersion X-ray spectroscopy. Concrete cubes with 0% to 50% replacement levels of cement by SSA were evaluated for their mechanical properties. A critical level of 20 to 30% SSA improved both corrosion resistance and strength of concrete. Extrapolation modeling for the strength and corrosion rate with respect to later age were made. SSA is a suitable replacement material for natural limestone in cement productions.


NANO ◽  
2009 ◽  
Vol 04 (03) ◽  
pp. 165-170 ◽  
Author(s):  
XIAO-JUN HU ◽  
JIN-KU LIU ◽  
XIAO-YAN QIN ◽  
JIA HUANG ◽  
YI YI

The hydroxylapatite nanostructures with different morphologies have been synthesized by a facile solution approach. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) technologies, and Fourier transforms infrared spectroscopy (FT-IR). The control mechanism of the hydroxylapatite with various morphologies nanostructures was investigated. Some practical experimental conclusions could be obtained, which were expected to have potential values in crystal engineering research and practical applications.


2009 ◽  
Vol 283-286 ◽  
pp. 250-255 ◽  
Author(s):  
Abdurrahman Bahadir ◽  
Celaletdin Ergun ◽  
Murat Baydogan

Not many studies have been found in the literature on the effect of Ag ions on the structure and phase stability of hydroxylapatite which may be recognized as important information in the scaffold fabrication. The objective of the current study is to develop a better understanding on the structure and behavior of the antibacterial Ag incorporated hydroxylapatite. In order to do this, Ag doped hydroxylapatite was made by a precipitation method, and sintered in air at 1300oC. The materials were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), density measurements and scanning electron microscopy (SEM).


2014 ◽  
Vol 1078 ◽  
pp. 20-24
Author(s):  
Jiang Jie Wang ◽  
Xiao Hong Yang ◽  
Jing Wang ◽  
Qin Tong ◽  
Jin Ku Liu

Zinc phosphate materials which have different morphologies, particle size and good crystalline were prepared via an effective template method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FT-IR). The control mechanism of the zinc phosphate was investigated. Some practical experimental conclusions could be obtained, which were expected to have potential values in synthesis of functional materials.


2010 ◽  
Vol 663-665 ◽  
pp. 125-128
Author(s):  
Chong Hai Deng ◽  
Han Mei Hu ◽  
Shang Lin Wang ◽  
Guo Quan Shao

Cauliflower-like ZnO superstructures composed of nanoparticles in large scale were successfully synthesized only using Zn(CH3COO)2•2H2O and triethanolamine (TEA) aqueous solution mixtures via a template-free sonochemical process at the ambient condition. A number of techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible absorption and photoluminescence (PL) were used to characterize the obtained ZnO products. It has been interestingly found that UV-Vis absorption spectrum shows not only a weak and sharp peak at 367 nm in ultraviolet region but also a strong and broad band centered at 564 nm in visible region. The possible formation mechanism of ZnO cauliflower-like structure is also proposed.


2012 ◽  
Vol 557-559 ◽  
pp. 996-1004
Author(s):  
Si Man Liu ◽  
Bin Ba Yan ◽  
Pin Wang

Na-montmorillonite was modified by CTAMB through the intercalation. The effects of amount, temperature, time on microstructure were characterized by X-ray diffraction; Fourier transforms infrared spectrometer, and N2adsorption isotherms. At same time, the adsorption performance on the nitrobenzene was compared by UV-visible absorption spectra. The results show that: CTAMB can effectively increase the crystal spacing of sodium montmorillonite. The reaction time and reaction temperature has little effect on the reaction process. The modified montmorillonite by CTAMB can adsorption nitrobenzene, and its adsorption properties relate with the crystal spacing. At the same time pore volume of modified montmorillonite can be increased, it is beneficial to the adsorption of nitrobenzene. Compare with OTAC, the pore radius of montmorillonite modified by CTAMB is smaller.


2015 ◽  
Vol 773-774 ◽  
pp. 1133-1137 ◽  
Author(s):  
Li Sze Lai ◽  
Yin Fong Yeong ◽  
Kok Keong Lau ◽  
Mohd Shariff Azmi

This paper presents the formation of highly crystalline ZIF-8 using microwave-assisted solvothermal method. The crystallinity of the ZIF-8 particles was characterized using X-ray diffraction. The lattice vibrations of the structure in the ZIF-8 framework were determined through Fourier transforms infrared spectroscopy. The morphology of the ZIF-8 particles was observed through scanning electron microscopy. The results showed that, 0.5 hour was sufficient for the formation of highly crystalline ZIF-8 particles using microwave-assisted solvothermal method under temperature 120 oC.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


2018 ◽  
Vol 73 (8) ◽  
pp. 601-609 ◽  
Author(s):  
Bei Wang ◽  
Pei-Zhi Zhang ◽  
Xin Chen ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractA series of guanidinium chloride derivatives have been synthesized by condensation of 1,3-diaminoguanidine monohydrochloride with heteroaromatic formaldehydes in good yields. All compounds were characterized by nuclear magnetic resonances and infrared spectroscopies, and the molecular structures of four compounds were determined by single crystal X-ray diffraction. The optical properties of these guanidinium chloride derivatives with fluoride anions were investigated, showing selective color changes from colorless to yellow or orange, red-shifted in the ultraviolet/visible absorption spectra.


1989 ◽  
Vol 94 (3) ◽  
pp. 391-401
Author(s):  
R.W. Kensler ◽  
M. Stewart

A procedure has been developed for isolating gold-fish skeletal muscle thick filaments that preserves the near-helical arrangement of the myosin cross-bridges under relaxing conditions. These filaments have been examined by electron microscopy and computer image analysis. Electron micrographs of the negatively stained filaments showed a clear periodicity associated with the crossbridges, with an axial repeat every 42.9 nm. Computed Fourier transforms of the negatively stained filaments showed a series of layer lines confirming this periodicity, and were similar to the X-ray diffraction patterns of fish muscle obtained by J. Hartford and J. Squire. Analysis of the computed transform data and filtered images of the isolated fish filaments demonstrated that the myosin crossbridges lie along three strands. Platinum shadowing demonstrated that the strands have a right-handed orientation, and computed transforms and filtered images of the shadowed filaments suggest that the crossbridges are perturbed both axially and azimuthally from an ideal helical arrangement.


Sign in / Sign up

Export Citation Format

Share Document