scholarly journals Online Junction Temperature Estimation Method for SiC Modules With Built-in NTC Sensor

2019 ◽  
Vol 4 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Ping Liu ◽  
◽  
Changle Chen ◽  
Xing Zhang ◽  
Shoudao Huang ◽  
...  
2015 ◽  
Vol 55 (9-10) ◽  
pp. 2022-2026 ◽  
Author(s):  
U.M. Choi ◽  
F. Blaabjerg ◽  
F. Iannuzzo ◽  
S. Jørgensen

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Umit Demirbas ◽  
Martin Kellert ◽  
Jelto Thesinga ◽  
Yi Hua ◽  
Simon Reuter ◽  
...  

AbstractWe present detailed experimental results with cryogenic Yb:YLF gain media in rod-geometry. We have comparatively investigated continuous-wave (cw) lasing and regenerative amplification performance under different experimental conditions. In the cw lasing experiments effect of crystal doping, cw laser cavity geometry and pump wavelength on lasing performance were explored. Regenerative amplification behavior was analyzed and the role of depolarization losses on performance was investigated. A recently developed temperature estimation method was also employed for the first time in estimating average crystal temperature under lasing conditions. It is shown that the thermal lens induced by transverse temperature gradients is the main limiting factor and strategies for future improvements are discussed. To the best of our knowledge, the achieved results in this study (375 W in cw, and 90 W in regenerative amplification) are the highest average powers ever obtained from this system via employing the broadband E//a axis.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2745
Author(s):  
Alessandro Soldati ◽  
Matteo Dalboni ◽  
Roberto Menozzi ◽  
Carlo Concari

The on-state voltage of MOSFETs is a convenient and powerful temperature-sensitive electric parameter (TSEP) to determine the junction temperature, thus enabling device monitoring, protection, diagnostics and prognostics. The main hurdle in the use of the on-state voltage as a TSEP is the per-device characterization procedure, to be carried out in a controlled environment, with high costs. In this paper, we compare two novel techniques for MOSFET junction temperature estimation: controlled shoot-through and direct heating by resistive heaters embedded in two Kapton (polyimide) films. Both allow in-place characterization of the TSEP curve with the device mounted in its final circuit and assembly, including the working heat sink. The two methods are also validated against the conventional procedure in a thermal chamber.


Sign in / Sign up

Export Citation Format

Share Document