scholarly journals Investigation of Feature Selection Techniques for Face Recognition Using Feature Fusion Model

Author(s):  
N. Vijaya Kumar ◽  
M.S. Irfan Ahmed

2013 ◽  
Vol 8 (2) ◽  
pp. 787-795
Author(s):  
Sasi Kumar Balasundaram ◽  
J. Umadevi ◽  
B. Sankara Gomathi

This paper aims to achieve the best color face recognition performance. The newly introduced feature selection method takes advantage of novel learning which is used to find the optimal set of color-component features for the purpose of achieving the best face recognition result. The proposed color face recognition method consists of two parts namely color-component feature selection with boosting and color face recognition solution using selected color component features. This method is better than existing color face recognition methods with illumination, pose variation and low resolution face images. This system is based on the selection of the best color component features from various color models using the novel boosting learning framework. These selected color component features are then combined into a single concatenated color feature using weighted feature fusion. The effectiveness of color face recognition method has been successfully evaluated by the public face databases.



2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.



Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 884
Author(s):  
Antonio García-Domínguez ◽  
Carlos E. Galván-Tejada ◽  
Ramón F. Brena ◽  
Antonio A. Aguileta ◽  
Jorge I. Galván-Tejada ◽  
...  

Children’s healthcare is a relevant issue, especially the prevention of domestic accidents, since it has even been defined as a global health problem. Children’s activity classification generally uses sensors embedded in children’s clothing, which can lead to erroneous measurements for possible damage or mishandling. Having a non-invasive data source for a children’s activity classification model provides reliability to the monitoring system where it is applied. This work proposes the use of environmental sound as a data source for the generation of children’s activity classification models, implementing feature selection methods and classification techniques based on Bayesian networks, focused on the recognition of potentially triggering activities of domestic accidents, applicable in child monitoring systems. Two feature selection techniques were used: the Akaike criterion and genetic algorithms. Likewise, models were generated using three classifiers: naive Bayes, semi-naive Bayes and tree-augmented naive Bayes. The generated models, combining the methods of feature selection and the classifiers used, present accuracy of greater than 97% for most of them, with which we can conclude the efficiency of the proposal of the present work in the recognition of potentially detonating activities of domestic accidents.



Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
Ong Wei Wen ◽  
Husnul Ajra ◽  
Yussuf Ahmed ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document