scholarly journals Balancing Energy Consumption in Wireless Sensor Networks Using Fuzzy Artificial Bee Colony Routing Protocol

2013 ◽  
Vol 7 (2) ◽  
pp. 1018-1032
Author(s):  
Imad S. Alshawi

Energy is an extremely critical resource for battery-powered Wireless Sensor Networks (WSNs), thus making energy-efficient protocol design a key challenging problem. Most of the existing routing protocols always forward packets along the minimum energy paths to merely minimize energy consumption, which causes an Uneven Energy Consumption (UEC) problem and eventually results in a network partition. Due to the limited energy resources of sensor nodes, selecting an appropriate routing protocol can be significantly improve overall performance especially energy awareness in WSNs. Therefore, this paper proposes an energy-efficient routing protocol called Fuzzy Artificial Bee Colony Routing Protocol (FABCRP) which is capable of finding the optimal routing path form the source to the destination by favoring some of routing criteria and balancing among them to prolong the network lifetime. To demonstrate the effectiveness of FABCRP in terms of balancing energy consumption and maximization of network lifetime, we compare it with Fuzzy approach, ABC algorithm and Fuzzy_A-star approach using the same criteria in two different topographical areas. Simulation results show that the network lifetime achieved by FABCRP could be increased by nearly 35%, 30%, and 15% more than that obtained by Fuzzy, ABC and Fuzzy_A-star respectively.

2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987938 ◽  
Author(s):  
Fang Zhu ◽  
Junfang Wei

Wireless sensor networks have drawn tremendous attentions from all fields because of their wide application. Maximizing network lifetime is one of the main problems in wireless sensor networks. This article proposes an energy-efficient routing protocol which adopts unequal clustering technology to solve the hot spots problem and proposes double cluster head strategy to reduce the energy consumption of head nodes in the clusters. In addition, to balance the energy consumption between cluster heads and cluster members, a hybrid cluster head rotation strategy based on time-driven and energy-driven is proposed, which can make the timing of rotation more reasonable and the energy consumption more efficient. Finally, we compare the proposed protocol with LEACH, DEBUC, and UCNPD by simulation experiments. The simulation results prove that our proposed protocol can effectively improve the performance in terms of network lifetime, energy consumption, energy balance, stability, and throughput.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Sign in / Sign up

Export Citation Format

Share Document