scholarly journals Using Quinclorac to Control Annual Grasses and Palmer Amaranth in Grain Sorghum (Sorghum bicolor L.)

2021 ◽  
Vol 12 ◽  
pp. 1-10
Author(s):  
James Grichar ◽  
Travis Janak

Field studies were conducted during the 2015 and 2016 growing seasons in south-central Texas to determine control of Palmer amaranth and annual grasses along with grain sorghum tolerance to quinclorac alone and in various combinations when applied to weeds < 5 cm (EPOST) or 10 to 16 cm tall (LPOST). When evaluated late-season quinclorac alone at 0.43 kg ae ha-1 controlled broadleaf signalgrass 72% when applied EPOST and 91% when applied LPOST. Combinations of quinclorac with either atrazine, pyrasulfotole + bromoxynil, dicamba, or dimethenamid-P controlled Palmer amaranth 88 to 100% when applied EPOST or LPOST; however, broadleaf signalgrass control with these combination was better when applied LPOST (75 to 95%) compared with EPOST (37 to 72%) applications. Texas millet control with quinclorac was poor in both years and was never greater than 54%. Quinclorac plus either atrazine, pyrasulfotole + bromoxynil, dicamba, or atrazine + dimethenamid-P caused at least 20% sorghum injury at one of three locations. No yield reductions from the untreated check were noted in either year; however, in 2016 all treatments with the exception of quinclorac alone at 0.29 kg ha-1 applied EPOST, quinclorac + pyrasulfotole + bromoxynil applied LPOST, quinclorac + atrazine + pyrasulfotole + bromoxynil applied LPOST, and quinclorac + dicamba at either application timing produced yields that were greater than the untreated check.

2020 ◽  
Vol 11 ◽  
pp. 55-70
Author(s):  
W. James Grichar ◽  
Scott A. Nolte ◽  
Matthew E. Matocha ◽  
Paul Baumann ◽  
Jourdan M. Bell

Field studies were conducted under conventional tillage from 2014 through the 2018 growing seasons in central, south-central, and the Panhandle regions of Texas to determine corn tolerance and weed efficacy of the four-way premix of atrazine plus bicyclopyrone plus mesotrione plus S-metolachlor (hereafter referred to as ABMS).  No corn injury was noted at any location with any ABMS dose or application timing.  Preemergence (PRE) applications of ABMS at 2.41 kg ha-1 controlled Palmer amaranth (Amaranthus palmeri S. Wats.) 73 to 100% while smellmelon (Cucumis melo L.) control was 100%.  Annual sunflower (Helianthus annuus L.) control with ABMS at 2.41 kg ha-1 was 86% while a split application applied PRE followed by a postemergence (POST) application provided 99% control.  Texas millet (Urochloa texana Buckl.) control with ABMS applied PRE ranged from 12 to 35% while broadleaf signalgrass (Brachiaria platyphylla [Griseb.] Nash) control was 100%.  Browntop panicum [Urochloa fasciculate (Sw.) R. Webster] control with a PRE application of ABMS at 2.41 kg ai ha-1 was < 82% while jungle rice [Echinochloa colona (L.) Link] control was 98%.  Control of a kochia (Kochia scoparia L.) with PRE applications of ABMS at 2.41 kg ha-1 was 95% while the split rate of 1.2 kg ha-1 applied PRE and POST provided 99% control.  Corn yields were variable but in most instances all herbicide treatments improved yield over the untreated check.  Excellent control of broadleaf weeds was observed with ABMS; however, annual grass control can be variable, especially with large-seeded annual grasses such as Texas millet.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
W. James Grichar ◽  
Jack J. Rose ◽  
Peter A. Dotray ◽  
Todd A. Baughman ◽  
D. Ray Langham ◽  
...  

Growth chamber experiments were conducted to evaluate the response of sesame to PRE and POST applications of soil residual herbicides. PRE applications of acetochlor andS-metolachlor at 1.26 and 1.43 kg ai·ha−1showed little or no sesame injury (0 to 1%) 4 wks after herbicide treatments (WAT). POST treatments of acetochlor and trifluralin made 3 wks after planting (WAP) resulted in greater sesame injury (40%) compared to applications at bloom (18%). Field studies were conducted in Texas and Oklahoma during the 2014 and 2015 growing seasons to determine sesame response to clethodim, diuron, fluometuron, ethalfluralin, quizalofop-P, pendimethalin, pyroxasulfone, trifluralin, and trifloxysulfuron-sodium applied 2, 3, or 4 weeks after planting (WAP). Late-season sesame injury with the dinitroaniline herbicides consisted of a proliferation of primary branching at the upper nodes of the sesame plant (in the shape/form of a broom). Ethalfluralin and trifluralin caused more “brooming” effect than pendimethalin. Some yield reductions were noted with the dinitroaniline herbicides. Trifloxysulfuron-sodium caused the greatest injury (up to 97%) and resulted in yield reductions from the untreated check. Early-season diuron injury (leaf chlorosis and necrosis) decreased as application timing was delayed, and late-season injury was virtually nonexistent with only slight chlorosis (<4%) still apparent on the lower leaves. Sesame yield was not consistently affected by the diuron treatments. Fluometuron caused early-season injury (stunting/chlorosis), and a reduction of yield was observed at one location. Pyroxasulfone applied 2 WAP caused up to 25% sesame injury (stunting) but did not result in a yield reduction. Quizalofop-P caused slight injury (<5%) and no reduction in yield.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Travis W. Janak ◽  
W. James Grichar

Field studies were conducted in central and south-central Texas from 2013 through 2015 to evaluate crop tolerance and efficacy of various preemergence herbicides alone and in combination for weed control in field corn. Acetochlor and pendimethalin alone,S-metolachlor plus mesotrione, and the three-way combination ofS-metolachlor plus atrazine plus mesotrione provided the most consistent control of annual grasses including browntop panicum (Panicum fasciculatumL.), Texas millet (Urochloa texanaL.), barnyardgrass (Echinochloa crus-galliL.), and sprawling signalgrass (Brachiaria reptansL.). Palmer amaranth [Amaranthus palmeri(S.) Wats.] control was at least 90% with fluthiacet-methyl plus pyroxasulfone, atrazine plus either acetochlor, alachlor, dimethenamid-P,S-metolachlor, orS-metolachlor plus mesotrione, saflufenacil plus dimethenamid-P, andS-metolachlor plus mesotrione. Hophornbeam copperleaf (Acalypha ostryifoliaL.) was difficult to control; however, acetochlor, saflufenacil or pyroxasulfone alone, saflufenacil plus dimethenamid-P, andS-metolachlor plus mesotrione provided at least 90% control. Acetochlor or saflufenacil alone, thiencarbazone-methyl plus isoxaflutole, dimethenamid-P plus atrazine, rimsulfuron plus mesotrione, and saflufenacil plus dimethenamid-P controlled common sunflower (Helianthus annuusL.) at least 90%. Corn injury was minimal (≤3%) with all herbicides. In general, corn grain yield was greatest with herbicide treatments containing more than one active ingredient compared with a single active ingredient.


2008 ◽  
Vol 35 (1) ◽  
pp. 38-42 ◽  
Author(s):  
W. James Grichar

Abstract Field studies were conducted during the 2003 through 2005 growing seasons to evaluate soil-applied herbicides alone or in combination with postemergence (POST) herbicides for horse purslane, smellmelon, and Palmer amaranth control in peanut. Pendimethalin alone applied preplant incorporated (PPI) failed to control any of the three weeds (&lt; 70% control). Pendimethalin in combination with diclosulam, followed by imazethapyr applied preemergence (PRE), or followed by either acifluorfen or imazapic applied postemergence (POST) controlled all three weed species at least 80%. The soil-applied herbicides flumioxazin, imazethapyr, S-metolachlor, or dimethenamid applied alone failed to control horse purslane and smellmelon (&lt; 75%). Pendimethalin controlled Palmer amaranth less than 42% while flumioxazin at 0.07 kg/ha or dimethenamid at 1.12 kg/ha controlled Palmer amaranth less than 75%. Imazethapyr alone or pendimethalin applied PPI followed by imazethapyr applied PRE or imazapic applied POST controlled Palmer amaranth at least 99%. Pendimethalin applied PPI was present in all herbicide systems that yielded greater than the untreated check. In addition, 80% or greater control of at least 2 of 3 weed species resulted in the highest yields, with the exception of pendimethalin followed by acifluorfen.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Dan D. Fromme ◽  
Peter A. Dotray ◽  
W. James Grichar ◽  
Carlos J. Fernandez

Field studies were conducted during the 2008 and 2009 growing seasons at five locations in the Texas grain sorghum producing regions to evaluate pyrasulfotole plus bromoxynil combinations for weed control and grain sorghum response. All pyrasulfotole plus bromoxynil combinations controlledAmaranthus palmeri,Cucumis melo, andProboscidea louisianicaat least 94% while control ofUrochloa texanawas never better than 69%. Pyrasulfotole plus bromoxynil combinations did result in early season chlorosis and stunting; however, by the end of the growing season no visual injury or stunting differences were noted when compared to the untreated check. Early season grain sorghum chlorosis and stunting with pyrasulfotole plus bromoxynil combinations did not affect grain sorghum yields with the exception of pyrasulfotole at 0.03 kg ai/ha plus bromoxynil at 0.26 kg ai/ha plus atrazine at 0.58 kg ai/ha applied early postemergence followed by pyrasulfotole plus bromoxynil applied mid-postemergence which reduced yield at one of two locations in 2008. Grain sorghum yield increased following all pyrasulfotole plus bromoxynil treatments compared to the untreated check in 2009.


1997 ◽  
Vol 11 (4) ◽  
pp. 708-713 ◽  
Author(s):  
W. James Grichar

Field studies were conducted from 1992 through 1994 to evaluate application timing of seven postemergence (POST) broadleaf herbicides alone and in mixtures for control of eclipta and pitted morningglory. Imazethapyr and 2,4-DB did not control eclipta while AC 263,222 applied early postemergence (EPOST) at 0.07 kg/ha provided greater than 90% control in 2 of 3 yr. EPOST applications of bentazon, acifluorfen + bentazon, and pyridate controlled eclipta at least 92% all 3 yr. Lactofen applied EPOST at 0.28 kg/ha provided similar levels of eclipta control in 2 of 3 yr. Imazethapyr controlled pitted morningglory > 70% when applied EPOST. AC 263,222 controlled pitted morningglory a minimum of 83% when applied EPOST at 0.04 or 0.07 kg/ha. Pitted morningglory control was at least 85% with 2,4-DB applied alone or in a mixture with AC 263,222, acifluorfen, imazethapyr, lactofen, or pyridate. Effective weed control increased peanut yields up to 98% over the untreated check.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1159-1164 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Erik J. Wenninger ◽  
Imad A. Eujayl

Curly top, caused by Curtovirus spp., is a widespread disease problem vectored by the beet leafhopper in semiarid sugar beet production areas. The insecticide seed treatment Poncho Beta has proven to be effective in controlling curly top in sugar beet but was only evaluated under light to moderate disease pressure. Thus, the insecticide seed treatments Poncho Beta, NipsIt INSIDE, and Cruiser Force were evaluated under severe curly top pressure (six viruliferous beet leafhoppers per plant) in field studies during the 2010 and 2011 growing seasons on two commercial sugar beet cultivars. In addition, the foliar insecticides Movento, Provado, and Scorpion were also evaluated. The seed treatments and Scorpion reduced curly top symptoms by 33 to 41% (P < 0.0001) and increased root yield by 55 to 95% (P < 0.0001), sucrose content by 6.5 to 7.2% (P = 0.0013 to <0.0001), and estimated recoverable sucrose by 58 to 96% (P < 0.0001) when compared with the untreated check. Movento and Provado did not improve control beyond that provided by Poncho Beta. Even under severe disease pressure 50 to 55 days after planting, neonicotinoid seed treatments can effectively reduce curly top, increase yield, and help protect against early-season insect pest pressure.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Dan D. Fromme ◽  
Trey Price ◽  
Josh Lofton ◽  
Tom Isakeit ◽  
Ronnie Schnell ◽  
...  

Field studies were conducted in the upper Texas Gulf Coast and in central Louisiana during the 2013 through 2015 growing seasons to evaluate the effects of fungicides on grain sorghum growth and development when disease pressure was low or nonexistent. Azoxystrobin and flutriafol at 1.0 L/ha and pyraclostrobin at 0.78 L/ha were applied to the plants of two grain sorghum hybrids (DKS 54-00, DKS 53-67) at 25% bloom and compared with the nontreated check for leaf chlorophyll content, leaf temperature, and plant lodging during the growing season as well as grain mold, test weight, yield, and nitrogen and protein content of the harvested grain. The application of a fungicide had no effect on any of the variables tested with grain sorghum hybrid responses noted. DKS 53-67 produced higher yield, greater test weight, higher percent protein, and N than DKS 54-00. Results of this study indicate that the application of a fungicide when little or no disease is present does not promote overall plant health or increase yield.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Todd A. Baughman

Field studies were conducted during the 2001 and 2002 growing seasons in the Texas peanut growing regions to simulate residual concentrations of imazapic and imazethapyr in the soil and subsequent effects on cotton (Gossypium hirsutumL.). Simulated imazapic or imazethapyr rates included 0, 1/64X (1.09 g ai/ha), 1/32X (2.19 g ai/ha), 1/16X (4.38 g ai/ha), 1/8X (8.75 g ai/ha), 1/4X (17.5 g ai/ha), and 1/2X (35 g ai/ha) of the full labeled rate for peanut (Arachis hypogaeaL.) and incorporated prior to cotton planting. Cotton stunting with imazapic or imazethapyr was more severe at Denver City than other locations. All rates of imazapic and imazethapyr resulted in cotton stunting at Denver City while at Munday and Yoakum the 1/8X, 1/4X, and 1/2X rates of imazapic resulted in reduced cotton growth when compared with the untreated check. At all locations imazapic caused more stunted cotton than imazethapyr. Cotton lint yield was reduced by imazapic or imazethapyr at 1/4 X and 1/2 X rates at all locations when compared with the untreated check.


2015 ◽  
Vol 42 (2) ◽  
pp. 100-108 ◽  
Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Luke M. Etheredge

ABSTRACT Field studies were conducted during 2011 and 2012 in the Texas peanut production regions to evaluate encapsulated acetochlor for weed control and cultivar response. Acetochlor alone applied preemergence (PRE) controlled horse purslane, Palmer amaranth, smellmelon, and Texas millet as well as flumioxazin or S-metolachlor. The addition of pendimethalin to either acetochlor, flumioxazin, or S-metolachlor did improve weed control in some instances. In another study comparing the three above mentioned herbicides alone or followed by lactofen postemergence (POST), the addition of lactofen to acetochlor, flumioxazin, or S-metolachlor improved control of smellmelon and Palmer amaranth in some instances but did not affect horse purslane control. In a tolerance study to evaluate potential differences in variety response to acetochlor at 1.26 (1X) and 2.52 kg ai/ha (2X) applied preplant incorporated (PPI), PRE, early postemergence (EPOST), or POST, peanut yield or grade was not affected by either rate of acetochlor or application timing.


Sign in / Sign up

Export Citation Format

Share Document