scholarly journals Synthesis and Biological Evaluation of Some New 1,2,3-Triazole Derivatives As Anti-microbial Agents

2016 ◽  
Vol 11 (2) ◽  
pp. 3473-3484
Author(s):  
Bahaa Gamal Mohamed Youssif ◽  
Mostafa H. Abdelrahman

A series of 1,2,3-triazole derivatives bearing different chemical entities were prepared starting from 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetohydrazide, compound 2. The purity of all new compounds was checked by TLC and elucidation of their structures was confirmed by IR, 1H and 13C NMR along with High Resolution Mass Spectrometry (HRMS). All the target compounds were evaluated for their possible antimicrobial activity. Most of the tested compounds showed moderate to good antibacterial activity against most of the bacterial strains used in comparison with ciprofloxacin as a reference drug. The most active compounds were 4a, 9a, 9b, and 9f. Results of antifungal activity revealed that most of the tested compounds showed a good antifungal activity in comparison to fluconazole as a reference drug. Compounds 4a, 9c, 9d and 9f were the most active ones.

2019 ◽  
Vol 16 (9) ◽  
pp. 723-734
Author(s):  
B. Ramalingeswara Rao ◽  
Mohana R. Katiki ◽  
Kommula Dileep ◽  
C. Ganesh Kumar ◽  
G. Narender Reddy ◽  
...  

Two series of N-2-benzothiazolyl-4-(arylsulfonyl)-1-piperazineacetamides/propanamides were synthesized from substituted 2-aminobenzothiazoles and were assayed for their in vitro antimicrobial activities against a panel of different pathogenic bacterial strains such as Micrococcus luteus, S. aureus, S. aureus MLS-16, B. subtilis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella planticola and Candida albicans. Among the synthesized compounds 5e,f,g and 6g,h,i showed promising antifungal activity against C. albicans as compared to the reference drug, miconazole. Further, compounds 6g,h,i showed broad spectrum antibacterial activity against all the tested bacterial strains, while the compounds 6a-f,j-m showed significant antibacterial activity against all the tested bacterial strains as compared to the reference drug, ciprofloxacin. In addition, the target compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity, and, among the tested, compounds 5j,k,l and 6i showed promising AChE inhibitory activity.


2021 ◽  
Vol 75 ◽  
Author(s):  
Fatima Belhadj ◽  
Zahira Kibou ◽  
Mohammed Benabdallah ◽  
Mohammed Aissaoui ◽  
Mohammed Nadjib Rahmoun ◽  
...  

ABSTRACT A simple and efficient approach has been developed to synthesise novel and functionalised 5H-chromeno[2,3-d] pyrimidines derivatives (4a-h). This approach entails treating 2-amino-3-cyano-4H-chromenes (3a-h) with formamidine acetate under microwave irradiations and solvent-free conditions. All structures of new compounds obtained in this study were characterised by IR, MS, 1H and 13C NMR analysis. Additionally, the synthesised compounds were investigated for their antibacterial and antioxidant potential. Compounds 3b, 3c, 3e, 4c and 4e showed significant activities. Keywords: 5H-chromeno[2,3-d] pyrimidine; 4H-chromene; solvent-free conditions; antioxidant activity; antibacterial activity


2013 ◽  
Vol 23 (24) ◽  
pp. 6721-6727 ◽  
Author(s):  
Jyoti Mareddy ◽  
Suresh Babu Nallapati ◽  
Jayasree Anireddy ◽  
Yumnam Priyadarshini Devi ◽  
Lakshmi Narasu Mangamoori ◽  
...  

2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Israel Bonilla Landa ◽  
Osvaldo León De la Cruz ◽  
Diana Sánchez Rangel ◽  
Randy Ortiz Castro ◽  
Benjamin Rodriguez Haas ◽  
...  

Abstract. Fusarium Dieback, a new and lethal insect-vectored disease can host over 300 tree species including the avocado trees. This problem has recently attracted the attention of synthetic chemist not only to develop new triazol antifungal agents but also due to severe drug resistance to “classic” triazol antifungal agents. Here, a series of novel antifungal triazoles with a p-trifluoromethylphenyl moiety were synthesized and characterized by spectroscopic and spectrometric methods. Most of the target compounds synthesized showed from modest to good inhibitory activity and less phytotoxicity in comparison with the commercially available propiconazol; in particular, compounds 7 and 13 were active against both Fusarium solani and Fusarium euwallaceae. The results showed that compounds 7, 13, and 4 have great potential to be developed as new antifungal agents because of both good antifungal activity and low phytotoxicity. SAR showed that free alcohols and not O-protected compounds significantly influence the activity. Hence, a-methyl-a-1,2,4-triazole emerged as novel compound to develop new ketone-triazole-type antifungal agents for the management of Fusarium Dieback disease Resumen. Fusarium Dieback es una nueva enfermedad letal transmitida por insectos que actúan como vectores y puede atacar a más de 300 especies de árboles, incluidos los árboles de aguacate. Recientemente, este problema ha atraído la atención de los químicos sintéticos para desarrollar nuevos agentes antifúngicos triazólicos debido a la resistencia severa que desarrollan los insectos a los agentes antifúngicos triazólicos "clásicos". Durante este trabajo, se sintetizaron nuevos triazoles antifúngicos que contienen un grupo p-trifluorometilfenilo y se caracterizaron por métodos espectroscópicos y espectrométricos. La mayoría de los compuestos diana sintetizados mostraron una actividad inhibidora de modesta a buena y menos fitotoxicidad en comparación con el propiconazol que es comercialmente disponible; en particular, los compuestos 7 y 13 mostraron ser activos contra Fusarium solani y Fusarium euwallaceae. Los resultados mostraron que los compuestos 7, 13 y 4 tienen un gran potencial para desarrollarse como nuevos agentes antifúngicos debido a la buena actividad antifúngica y su baja fitotoxicidad. SAR mostró que los alcoholes libres y no los compuestos O-protegidos influyen significativamente en la actividad. Por lo tanto, el α-metil-α-1,2,4-triazol surgió como un nuevo compuesto líder para desarrollar nuevos agentes antifúngicos tipo cetona-triazol para el tratamiento de la enfermedad Fusarium Dieback.


2020 ◽  
Vol 13 (12) ◽  
pp. 469
Author(s):  
Sergey N. Lavrenov ◽  
Elena B. Isakova ◽  
Alexey A. Panov ◽  
Alexander Y. Simonov ◽  
Viktor V. Tatarskiy ◽  
...  

The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5–C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 μg/mL. Compounds with C5–C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 μg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 μg/mL) and Klebsiella pneumonia (2 and 8 μg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5852
Author(s):  
Hui Bai ◽  
Xuelian Liu ◽  
Pengfei Chenzhang ◽  
Yumei Xiao ◽  
Bin Fu ◽  
...  

A series of novel 1,2,4-triazole derivatives containing oxime ether and phenoxy pyridine moiety were designed and synthesized. The new compounds were identified by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). Compound (Z)-1-(6-(4-nitrophenoxy)pyridin-3-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one O-methyl oxime (5a18) was further confirmed by X-ray single crystal diffraction. Their antifungal activities were evaluated against eight phytopathogens. The in vitro bioassays indicated that most of the title compounds displayed moderate to high fungicidal activities. Compound (Z)-1-(6-(4-bromo-2-chlorophenoxy)pyridin-3-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one O-methyl oxime (5a4) exhibited a broad-spectrum antifungal activities with the EC50 values of 1.59, 0.46, 0.27 and 11.39 mg/L against S. sclerotiorum, P. infestans, R. solani and B. cinerea, respectively. Compound (Z)-1-(6-(2-chlorophenoxy)pyridin-3-yl)-2-(1H-1,2,4-triazol-1-yl)ethan-1-one O-benzyl oxime (5b2) provided the lowest EC50 value of 0.12 mg/L against S. sclerotiorum, which were comparable to the commercialized difenoconazole. Moreover, homologous modeling and molecular docking disclosed possible binding modes of compounds 5a4 and 5b2 with CYP51. This work provided useful guidance for the discovery of new 1,2,4-triazole fungicides.


Author(s):  
Seyed Esmaeil Sadat-Ebrahimi ◽  
Hiva Babania ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Mohammad Sadegh Asgari ◽  
Somayeh Mojtabavi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document