scholarly journals Textiles Printing Using Microencapsulated Pigments in Biodegradable Thickeners

2018 ◽  
Vol 15 (1) ◽  
pp. 6122-6129 ◽  
Author(s):  
Meram S. Abdelrahman ◽  
Sahar Nassar ◽  
Hamada Mashaly ◽  
Safia Mahmoud ◽  
Dalia Maamoun

Micro-encapsulated pigments were formulated into biodegradable printing pastes and their properties were analyzed. The pigment was used as the core material and polylactic-based biodegradable thickener was used as the wall-former. Cotton/polyester blend fabric was printed with micro-encapsulated pigment using screen-printing technique without dispersing agents, penetrating agents, leveling agents or other auxiliaries. Micro-encapsulated pigment has been characterized in terms of average particle size and size distribution, morphological structure and elemental composition using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The variations in viscosity and paste stability were observed upon storing over 7 days at ambient temperature. For permanence, the micro-encapsulation process afforded better colorfastness properties against light, washing, rubbing, and perspiration.

2013 ◽  
Vol 544 ◽  
pp. 76-80
Author(s):  
Tao Feng ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
De Xin Huang ◽  
Hai Fang Xu ◽  
...  

Mixed-potential-type NO2 sensor based on yttria-stabilized zirconia(YSZ) with NiO sensing electrode was prepared by the screen-printing technique and its physical characteristics were studied by the X-ray diffraction and scanning electron microscope. The response of electromotive force (EMF) and complex impedance of the sensor were tested under different NO2 concentrations and temperatures. The results show that, at the range of 550–750 °C, the EMF values are negative and almost linear to the logarithm of NO2 concentration. But the sensitivity of the sensor and the amplitude of the EMF response to NO2 concentration both obviously decrease with the increase of the work temperature. In addition, the semicircular arcs of the complex impedance spectra shrink regularly with a raise of NO2 concentration at 600 °C.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Syuusuke Nomura ◽  
Yoshihiro Matsuo ◽  
Takahiro Wada

AbstractWe successfully prepared (Cu1-XAgx)InSe2 solid solution with 0 ¡Ü x ¡Ü 1.0 by a mechanochemical process without any additional heating. The obtained fine powder was suitable for screen-printing. Particulate precursors were deposited in a thin layer by a screen-printing technique and then the porous precursor layer was sintered into a dense polycrystalline film by atmospheric-pressure firing. The crystal structures of the powder and the film were analyzed by x-ray diffraction and the microstructure of the film was observed in an SEM. For the (Cu1-XAgx)InSe2 films with x ¡Ü 0.2, the (Cu,Ag)InSe2 films had a good microstructure for the solar cell absorbers.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2017 ◽  
Vol 9 (24) ◽  
pp. 3689-3695 ◽  
Author(s):  
C. Karuwan ◽  
A. Wisitsoraat ◽  
P. Chaisuwan ◽  
D. Nacapricha ◽  
A. Tuantranont

This work presents a new method for mass fabrication of a new microfluidic device with integrated graphene-based electrochemical electrodes by the screen printing technique for in-channel amperometric detection.


Author(s):  
Saranyoo Chaiwichian ◽  
Buagun Samran

Abstract Monoclinic BiVO4 photocatalyst films decorated on glass substrates were successfully fabricated via a dip-coating technique with different annealing temperatures of 400 °C, 450 °C, 500°C, and 550 °C. All of the physical and chemical properties of as-prepared BiVO4 photocatalyst film samples were investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra techniques. The results revealed that the as-prepared BiVO4 photocatalyst film samples retained a monoclinic phase with an average particle size of about 50 – 100 nm. Moreover, the BiVO4 photocatalyst film samples showed a strong photoabsorption edge in the range of visible light with the band gap energy of 2.46 eV. The photocatalytic activities of all the film samples were tested by the degradation of model acid orange 7 under visible light irradiation. The BiVO4 photocatalyst film sample annealed at a temperature of 500 °C showed the highest photoactivity efficiency compared with other film samples, reaching up to 51%within 180 min. In addition, the stability and reusability of BiVO4 photocatalyst film sample made with an annealing temperature of 500 °C did not show loss of photodegradation efficiency of acid orange 7 after ten recycles. A likely mechanism of the photocatalytic process was established by trapping experiments, indicating that the hydroxyl radical scavenger species can be considered to play a key role for acid orange 7 degradation under visible light irradiation.


2021 ◽  
Author(s):  
Mahesh Gaidhane ◽  
Deepak Taikar ◽  
Pravin Gaidhane ◽  
Kalpana Nagde

Abstract Nanocrystalline α-Fe2O3 is synthesized by sol-gel technique. The prepared nanomaterial was characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM) and photoluminescence (PL) techniques. X-ray powder diffraction analysis confirmed the formation of α-Fe2O3. Electron microscopy showed spherical morphologies with an average particle size of 30-40 nm. The magnetic property of the prepared material was studied by VSM at room temperature. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Photoluminescence (PL) emission spectra show intense broad emission band centered at 570 nm with 393 nm excitation indicating its usefulness for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe2O3 nanoparticles was analyzed and the nanopowder exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.


2021 ◽  
Vol 22 (48) ◽  
Author(s):  
Tran Thi Bich Quyen ◽  
Ngo Nguyen Tra My ◽  
Do Thi Thuy Ngan ◽  
Duy Toan Pham ◽  
Doan Van Hong Thien

For the first time, cuprous oxide nanocubes (Cu2O NCBs) were successfully combined with chitosan nanoparticles (CS NPs) to generate Cu2O NCBs/CS NPs composites material with highly optical property and photocatalytic activity using a simple and eco-friendly synthetic approach at room temperature for 30 min. The synthesized Cu2O NCBs NPs/CS NPs were determined characterizations by Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X – ray Diffraction (XRD),  Transmission Electron Microscope (TEM) and Energy-dispersive X-ray spectroscopy (EDX). Results show that the Cu2O NCBs/CS NPs composites have an average particle size of ~3-5 nm; in which, Cu2O has the form of nanocubes (Cu2O NCBs) with size ~3-4 nm and chitosan nanoparticles with spherical shape (CS NPs) with size ~4-5 nm. In addition, the percent (%) composition of elements present in Cu2O NCBs/CS NPs composites material have been obtained respective: Cu (23.99%), O (38.18%), and C (33.61%). Moreover, Cu2O NCBs/CS NPs composites material was also investigated for photocatalytic activity applied in p-nitrophenol degradation. The obtained results showed that the catalytic capability of Cu2O NCBs/CS NPs for p-nitrophenol reduction reached the highest efficiency >55% in the treatment time of 25 min, and this efficiency was higher than that result of using ZnO@chitosan nanoparticles (ZnO@CS NPs) catalyst under the same conditions for comparison.


Sign in / Sign up

Export Citation Format

Share Document