ferroelectric and piezoelectric properties
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 49)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Sadok. Hadjadj ◽  
Afaf. Bouchaala ◽  
Noura. Mebrouki ◽  
Lazhar. Benmabrouk ◽  
Ahmed. Boutarfaia

Piezoelectricity is one of the renewable and clean electrical energy sources, as it is generated from materials specially manufactured for this purpose in proportions and scales called piezoelectric materials, that is, electricity resulting from mechanical work that produces the electric field, and this is known as the direct piezoelectric effect. An inverse mechanical effect can also be observed when an electric field is applied to the same piezoelectric material that deforms and returns to its original shape after the electric field is removed. In order to contribute to improving the properties of these materials that have been prepared from insulating ceramic materials having an equivalent formula: Pb0.975 La0.015 Nd0.01 [(Zr 0,524 Ti 0,476) 0.9875 -3/4 z Nb0.005 Crz]O3 abbreviated PLNZCNT (z = 0%, 0.5%, 0.75%, 1%, 1.25%, 1,5% and 2%). The formation of pure single-phase perovskite compounds of tetragonal symmetry for all samples was confirmed by X-ray diffraction (XRD) analyzes. The scanning electron micrographs show that the grains have melted, most of the separating walls have disappeared, and the average grain size has increased. Information about the effects of chromium concentration on the measured properties was obtained based on temperature and frequency measurements of the dielectric properties of PLNZNT ceramics, represented by an increase in Curie temperature with increasing Cr3+ concentration. The ferroelectric properties of materials are characterized by the presence of a polarization hysteresis cycle as a function of the applied electric field (P-E). To measure the piezoelectric and electromechanical properties at room temperature, was used by the standard resonance and anti-resonance method. It was found that the sample E2 (0.75%) sintered at 1200°C achieves excellent dielectric, ferroelectric and piezoelectric properties (𝜺r=24394.51, tan δ =0.072 and Tc = 378K). The values of saturated electric polarization (Ps=29.61 µC/cm²), remnant electric polarization (Pr=24.63 µC/cm²) and coercive electric field (Ec=0.905kV/mm), as well as piezoelectric charge coefficient (d33 = 435 pC/N) for sample E2 (0.75%).


2021 ◽  
Vol 41 (7) ◽  
pp. 4116-4128
Author(s):  
Sasipohn Prasertpalichat ◽  
Somkiet Khengkhatkan ◽  
Theeranun Siritanon ◽  
Jaru Jutimoosik ◽  
Pinit Kidkhunthod ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2037
Author(s):  
Jima Wu ◽  
Yuheng Fu ◽  
Guo-Hua Hu ◽  
Shan Wang ◽  
Chuanxi Xiong

Compared to polyvinylidene fluoride (PVDF) and its copolymers, castor-oil-derived nylon-11 has been less explored over the past decades, despite its excellent piezoelectric properties at elevated temperatures. To utilize nylon-11 for future sensor or vibrational energy harvesting devices, it is important to control the formation of the electroactive δ′ crystal phase. In this work, nylon-11 films were first fabricated by solution-casting and were then uniaxially stretched at different stretching ratios (SR) and temperatures (Ts) to obtain a series of stretched films. The combination of two-dimensional wide-angle X-ray diffraction (2D-WAXD) and differential scanning calorimetry (DSC) techniques showed that the fraction of the δ′ crystal phase increased with the stretching ratio and acquired a maximum at a Ts of 80 °C. Further, it was found that the ferroelectric and piezoelectric properties of the fabricated nylon-11 films could be correlated well with their crystalline structure. Consequently, the stretched nylon-11 film stretched at an SR of 300% and a Ts of 80 °C showed maximum remanent polarization and a remarkable piezoelectric coefficient of 7.2 pC/N. A simple piezoelectric device with such a nylon-11 film was made into a simple piezoelectric device, which could generate an output voltage of 1.5 V and a current of 11 nA, respectively.


Sign in / Sign up

Export Citation Format

Share Document