scholarly journals A multiple knowledge approach for adaptation to environmental change: lessons learned from coastal Louisiana's tribal communities

2014 ◽  
Vol 21 (1) ◽  
pp. 61 ◽  
Author(s):  
Julie Koppel Maldonado

Environmental changes, such as sea level rise, are forcibly displacing communities around the world. Forced displacement, inadequate governance mechanisms to address relocation and economic-based adaptation and restoration efforts are leading to devastating social, cultural, health, and economic consequences for the people and communities affected. This article focuses on three tribal communities in coastal Louisiana that are experiencing rapid environmental change and risk of displacement due to historical discriminatory processes, oil and dam-related development projects, oil disasters, increased exposure to hurricanes, and relative sea level rise. Focusing on the political ecology of the communities' experiences of environmental change, including the impacts of displacement and decisions to stay in-place vs. relocate, this paper addresses broader issues of adaptive governance structures and policy implications. Building on Bronen's (2011) rights-based approach to adaptation and Shearer's (2012) approach to a political ecology of adaptation, I argue that governance structures should be put in place that support communities' in-situ adaptation efforts or, if the community decides its current location is no longer inhabitable, to assist community-led relocation efforts. Multiple forms of knowledge should be incorporated into and should inform the structures supporting the adaptation process. I highlight the social, political, environmental and economic context within which environmental changes are occurring in coastal Louisiana through discussion on the loss of the commons, the creation of an energy sacrifice zone, costbenefit based restoration efforts and forced displacement and relocation.Key words: Environmental change, displacement, relocation, adaptation

The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz5512 ◽  
Author(s):  
Torbjörn E. Törnqvist ◽  
Krista L. Jankowski ◽  
Yong-Xiang Li ◽  
Juan L. González

Coastal marshes are threatened by relative sea-level (RSL) rise, yet recent studies predict marsh survival even under the high rates of RSL rise expected later in this century. However, because these studies are mostly based on short-term records, uncertainty persists about the longer-term vulnerability of coastal marshes. We present an 8500-year-long marsh record from the Mississippi Delta, showing that at rates of RSL rise exceeding 6 to 9 mm year−1, marsh conversion into open water occurs in about 50 years. At rates of RSL rise exceeding ~3 mm year−1, marsh drowning occurs within a few centuries. Because present-day rates of global sea-level rise already surpass this rate, submergence of the remaining ~15,000 km2 of marshland in coastal Louisiana is probably inevitable. RSL-driven tipping points for marsh drowning vary geographically, and those for the Mississippi Delta may be lower than elsewhere. Nevertheless, our findings highlight the need for consideration of longer time windows in determining the vulnerability of coastal marshes worldwide.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9186 ◽  
Author(s):  
Nikolas J. Kaplanis ◽  
Clinton B. Edwards ◽  
Yoan Eynaud ◽  
Jennifer E. Smith

The impacts of sea-level rise (SLR) are likely to be the greatest for ecosystems that exist at the land-sea interface, where small changes in sea-level could result in drastic changes in habitat availability. Rocky intertidal ecosystems possess a number of characteristics which make them highly vulnerable to changes in sea-level, yet our understanding of potential community-scale responses to future SLR scenarios is limited. Combining remote-sensing with in-situ large-area imaging, we quantified habitat extent and characterized the biological community at two rocky intertidal study locations in California, USA. We then used a model-based approach to estimate how a range of SLR scenarios would affect total habitat area, areal extent of dominant benthic space occupiers, and numerical abundance of invertebrates. Our results suggest that SLR will reduce total available rocky intertidal habitat area at our study locations, leading to an overall decrease in areal extent of dominant benthic space occupiers, and a reduction in invertebrate abundances. As large-scale environmental changes, such as SLR, accelerate in the next century, more extensive spatially explicit monitoring at ecologically relevant scales will be needed to visualize and quantify their impacts to biological systems.


Author(s):  
Ashley M. Smallwood ◽  
Albert C. Goodyear ◽  
Thomas A. Jennings ◽  
Douglas A. Sain

The state of South Carolina is examined by the physiographic provinces of Mountains, Piedmont, and Coastal Plain using established Paleoindian projectile point types and their geographic distributions by raw materials. Foraging ranges are reconstructed. There is a substantial drop in post-Clovis point frequencies, as seen elsewhere in the Southeast, with a great increase by Dalton times. Younger Dryas age environmental changes are reviewed, with late Pleistocene flora and fauna changes noted. Starting in Dalton times, sea level rise appears to have affected settlement strategies due to the inundation of the primary resource habitats of the Coastal Plain. The Piedmont Transhumance hypothesis is offered as an explanation of these changes.


2021 ◽  
Author(s):  
Cindy Palinkas ◽  
Lorie Staver

<p>Living shorelines, defined in this study as narrow marsh fringes with adjacent sills, have been gaining traction as the preferred management strategy to mitigate shoreline erosion. These nature-based features provide the same ecosystem services as natural marshes while protecting coastlines. However, they also are threatened by the same environmental changes (sea-level rise, changing sediment supply) as natural marshes and may change characteristics of adjacent subtidal sediments. This study evaluates the role of plants in both the created marshes of living shorelines and, where present, beds of submersed aquatic vegetation (SAV) in the adjacent subtidal in the effectiveness, impacts, and resiliency of living shorelines over ~10 years in mesohaline Chesapeake Bay. At study sites, there is a net seaward movement of shorelines with living shoreline installation due to construction technique. This movement replaces shallow-water habitat immediately adjacent to the pre-existing shoreline; farther offshore, sedimentological changes vary among sites but do not appear to drive changes in the presence/absence of subtidal SAV. While current accretion rates in the created marshes are greater than local relative sea-level rise, there is evidence that accretion rates increase with marsh age, suggesting that living shorelines are most vulnerable in the first few years after installation. Because nutrient burial is maximized when SAV occur next to living shorelines, a management strategy that considers the subtidal and intertidal as integrated components of the coastal system is needed to optimize co-benefits of coastal protection.</p>


Sign in / Sign up

Export Citation Format

Share Document