scholarly journals Influence of wind direction on the infrared sea surface emissivity model including multiple reflection effect

2012 ◽  
Vol 63 ◽  
pp. 1-13 ◽  
Author(s):  
Kazuhiko Masuda
2010 ◽  
Vol 27 (2) ◽  
pp. 345-352 ◽  
Author(s):  
Sungwook Hong ◽  
Inchul Shin ◽  
Mi-Lim Ou

Abstract Accurate models of surface emissivity are important for interpreting satellite radiance observations. Surface emissivity depends on the satellite zenith angle, roughness, polarization, and refractive index of the surface. The effects of the roughness parameter on emissivity have not been studied thoroughly. By using an infrared geostationary satellite observation and a physical model based on the radiative transfer equation, the forward emissivity model and physical emissivity model are validated in the northwestern Pacific Ocean. First, the unpolarized emissivity at a given view angle and a wavelength of 10.8 μm in the thermal infrared spectral region is decomposed for the clear sky. The refractive index of the sea surface is quantitatively retrieved using the inversion of Fresnel equations. The refractive index of the sea surface derived from the physical emissivity exhibits a reasonable range within the infrared wavelength. The result of this investigation can be applied to the land emissivity model, which has not been studied thoroughly.


2002 ◽  
Vol 23 (23) ◽  
pp. 5117-5122 ◽  
Author(s):  
E. P. Dinnat ◽  
J. Boutin ◽  
G. Caudal ◽  
J. Etcheto ◽  
P. Waldteufel

2021 ◽  
Vol 1961 (1) ◽  
pp. 012065
Author(s):  
Yanyan Li ◽  
Zhenzhan Wang ◽  
Yiqiang Hu ◽  
Xiaolin Tong

2000 ◽  
Vol 203 (15) ◽  
pp. 2311-2322 ◽  
Author(s):  
B. Culik ◽  
J. Hennicke ◽  
T. Martin

We satellite-tracked five Humboldt penguins during the strong 1997/98 El Nino Southern Oscillation (ENSO) from their breeding island Pan de Azucar (26 degrees 09′S, 70 degrees 40′W) in Northern Chile and related their activities at sea to satellite-derived information on sea surface temperature (SST), sea surface temperature anomaly (SSTA), wind direction and speed, chlorophyll a concentrations and statistical data on fishery landings. We found that Humboldt penguins migrated by up to 895 km as marine productivity decreased. The total daily dive duration was highly correlated with SSTA, ranging from 3.1 to 12.5 h when the water was at its warmest (+4 degrees C). Birds travelled between 2 and 116 km every day, travelling further when SSTA was highest. Diving depths (maximum 54 m), however, were not increased with respect to previous years. Two penguins migrated south and, independently of each other, located an area of high chlorophyll a concentration 150 km off the coast. Humboldt penguins seem to use day length, temperature gradients, wind direction and olfaction to adapt to changing environmental conditions and to find suitable feeding grounds. This makes Humboldt penguins biological in situ detectors of highly productive marine areas, with a potential use in the verification of trends detected by remote sensors on board satellites.


Wind Energy ◽  
2012 ◽  
Vol 16 (6) ◽  
pp. 865-878 ◽  
Author(s):  
Yuko Takeyama ◽  
Teruo Ohsawa ◽  
Katsutoshi Kozai ◽  
Charlotte Bay Hasager ◽  
Merete Badger

SPIN ◽  
2015 ◽  
Vol 05 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Weiwei Zhu ◽  
Zongzhi Zhang ◽  
Jianwei Zhang ◽  
Yaowen Liu

In this paper, spin-dependent multiple reflection effect on spin-transfer torque (STT) has been theoretically and numerically studied in a spin valve nanopillar with a single or dual spin-polarizer. By using a scattering matrix method, we formulate an analytical expression of STT that contains the multiple interfacial reflection effect. It is found that the multiple reflections could enhance the STT efficiency and reduce the critical switching current. The STT efficiency depends on the spin polarization of both the free layer and polarizer. In the nanopillars with a dual spin polarizer, the multiple reflections would cause an asymmetric frequency dependence on the applied current, albeit exactly the same parameters are used in all three ferromagnetic layers, indicating that the frequency in the negative current varies much faster than that in the positive case.


Sign in / Sign up

Export Citation Format

Share Document