scholarly journals Change in Residual Stress in Worked Surface Layer of Austenitic Stainless Steel SUS304 due to Tensile Deformation.

1995 ◽  
Vol 44 (501) ◽  
pp. 745-749
Author(s):  
Makoto HAYASHI
2000 ◽  
Vol 123 (1) ◽  
pp. 130-134
Author(s):  
Makoto Hayashi ◽  
Kunio Enomoto

Changes in the residual stress in a worked surface layer of type 304 austenitic stainless steel due to tensile deformation were measured by the X-ray diffraction residual stress measuring method. The compressive residual stresses introduced by end-mill, end-mill side cutter, and grinder were easily changed into tensile stresses when the plate specimens were subjected to tensile stress greater than the yield stress of the solid solution heat-treated material. The residual stresses after the tensile deformation depend on the initial residual stresses and the degree of preliminary working. The behavior of the residual stress changes can be interpreted if the surface-worked material is regarded as a composite made of solid solution heat-treated material and work-hardened material.


2011 ◽  
Vol 681 ◽  
pp. 278-283 ◽  
Author(s):  
Kenji Suzuki ◽  
Takahisa Shobu

Austenitic stainless steel (SUS316L) was used as specimen material, and the plate specimens were deformed plastically with a wide range of strain rates (6.67×10-5~ 6.70×102/s). The residual micro-stress for each lattice plane was measured with hard synchrotron X-rays. The residual macro-stress due to tensile deformation depended on strain rate. The residual micro-stresses varied from tension to compression, depending on the diffraction elastic constant. The soft lattice plane had tensile residual stress, and the hard lattice plane had compressive residual stress. The higher the strain rate, the smaller the difference in residual micro-stresses. The residual micro-stresses of the surfaces peened with the laser-peening or water-jet-peening were examined. Both surfaces had exhibited large compressive residual stress. The residual micro-stress on the peened surfaces showed a tendency opposite to residual micro-stress due to tensile deformation.


2013 ◽  
Vol 768-769 ◽  
pp. 550-556 ◽  
Author(s):  
Ke Zhan ◽  
Chuan Hai Jiang ◽  
Henry Pan

Shot peening is an important surface treatment which can induce compressive residual stress and refine micro-structure in the deformed surface layer. In this paper, the conventional shot peening, dual shot peening and triple shot peening have been applied to S30432 austenitic stainless steel. The residual stress and micro-structure in the deformed layer were investigated by X-ray diffraction method. The results revealed that a compressive residual stress field was induced in the deformed layer for all shot peening conditions. As the shot peening step increased, the compressive residual stresses increased in near surface layer, and then deceased faster in deeper deformed layer. In terms of microstructure, the domain size increased, while the micro-strain decreased with the depth increasing in the deformed layer. Compare with the effect of three different shot peening method, triple shot peenng is more effective to optimize the compressive residual stress, microstructure and micro-hardness of S30432 austenitic stainless steel.


2010 ◽  
Vol 652 ◽  
pp. 7-12 ◽  
Author(s):  
Kenji Suzuki ◽  
Takahisa Shobu

Material of the specimen was austenitic stainless steel (SUS316L). The specimens were given tensile plastic strains from 0% to 55%. The Vickers hardness of the specimen corresponded to the plastic strain. The residual macrostress was measured by Mn-Kα radiations. The residual macrostress of the annealed specimen had a small compression and changed into a tension after ten- sile plastic deformation. The specimen with 1% plastic strain showed the maximum tensile residual stress. To examine the dependency of the residual stress on the lattice plane, the residual microstress for each lattice plane was measured by hard synchrotron X-rays. The residual microstress was related with Young’s modulus which was calculated by Kro¨ ner model. A new method, 2θ-cos2 χ method, was proposed to solve the problem of coarse grains and it was excellent in comparison with the sin2 ψ method.


1992 ◽  
Vol 25 (3) ◽  
pp. 130 ◽  
Author(s):  
P. Palanichamy ◽  
A. Joseph ◽  
K. V. Kasiviswanathan ◽  
D. K. Bhattacharya ◽  
Baldev Raj

2006 ◽  
Vol 524-525 ◽  
pp. 697-702 ◽  
Author(s):  
Shinobu Okido ◽  
Hiroshi Suzuki ◽  
K. Saito

Residual stress generated in Type-316 austenitic stainless steel butt-weld jointed by Inconel-182 was measured using a neutron diffraction method and compared with values calculated using FEM analysis. The measured values of Type-316 austenitic stainless steel as base material agreed well with the calculated ones. The diffraction had high intensity and a sharp profile in the base metal. However, it was difficult to measure the residual stress at the weld metal due to very weak diffraction intensities. This phenomenon was caused by the texture in the weld material generated during the weld procedure. As a result, this texture induced an inaccurate evaluation of the residual stress. Procedures for residual stress evaluation to solve this textured material problem are discussed in this paper. As a method for stress evaluation, the measured strains obtained from a different diffraction plane with strong intensity were modified with the ratio of the individual elastic constant. The values of residual stress obtained using this method were almost the same as those of the standard method using Hooke’s law. Also, these residual stress values agreed roughly with those from the FEM analysis. This evaluation method is effective for measured samples with a strong texture like Ni-based weld metal.


2010 ◽  
Vol 638-642 ◽  
pp. 2992-2997 ◽  
Author(s):  
Hidefumi Date

The martensite induced in three types of austenitic stainless steel, which indicate the different stability of the austenitic phase (γ), were estimated by the resistivity measured during the tensile deformation or compressive deformation at the temperatures 77, 187 and 293 K. The resistivity curves were strongly dependent on the deformation mode. The volume fraction of the martensite (α’) was also affected by the deformation mode. The ε phase, which is the precursor of the martensite and is induced from the commencement of the deformation, decreased the resistivity. However, lots of defects generated by the deformation-induced martensite increased the resistivity. The experimental facts and the results shown by the modified parallelepiped model suggested a complicated transformation process depending on each deformation mode. The results shown by the model also suggested a linear relation between the resistivity and the martensite volume at the region of the martensite formation. The fact denoted that the resistivity is mostly not controlled by the austenite, ε phase and martensite, but by the defects induced due to the deformation-induced martensite.


Author(s):  
Xiao Wang ◽  
Yuetao Zhang ◽  
Huaying Li ◽  
Ming-yu Huang

Type 316 steels have been heavily utilized as the structural material in many construction equipment and infrastructures. This paper reports the characterization of degradation in 316 austenitic stainless steel during the plastic deformation. The in-situ EBSD results revealed that, with the increase of plastic strain, the band contrast (BC) value progressively decreased in both grain and grain boundaries, and the target surface becomes uneven after the plastic tensile, which indicates that the increase of surface roughness. Meanwhile, the KAM and ρGND values are low in the origin specimen but increased significantly after the in-situ tensile. The results indicated that the KAM and ρGND are closely related to the deformation degree of the materials, which can be used as the indicator for assessing the degradation of 316 steel. Besides, the re-orientation of grain occurred after the tensile deformation, which can be recognized from the lattice orientation and local orientation maps.


Sign in / Sign up

Export Citation Format

Share Document