scholarly journals Circular Tube Forming by Using Extrusion of Wood Powder Combined with Sucrose and Citric Acid

2021 ◽  
Vol 70 (12) ◽  
pp. 912-917
Author(s):  
Yuya SUZUMOTO ◽  
Shohei KAJIKAWA ◽  
Takashi KUBOKI
BioResources ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. 6600-6612
Author(s):  
Rasika L. Kudahettige-Nilsson ◽  
Henrik Ullsten ◽  
Gunnar Henriksson

An ecofriendly approach for the synthesis of plastic biomaterials based on renewable materials suitable for 3D printing application or other applications has been developed. The material was prepared from native (microcrystalline) or amorphous cellulose, citric acid, and glycerol or ethylene glycol, by a pretreatment at 40 °C and a curing at 175 °C for 1 h. The results showed that tensile properties and the water absorption level of the material were acceptable. The highest strain at break (14%) was obtained from materials made of 10% amorphous cellulose with 90% glycerol/citric acid. It had a maximum stress at 37 MPa. Moreover, materials were without ash content. Possible applications of the material in 3D-printers were discussed. In addition, application of mechanical pulp and wood powder into novel plastic material production was discussed. Foaming during curing might be a problem for this type of material, but this can be avoided by using amorphous cellulose in the recipe.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2314-2325
Author(s):  
Xiangyu Tao ◽  
Hiroshi Nonaka

To mitigate global warming and the serious problems incurred by the disposal of petroleum-based plastics, it is important to develop derivatives of biomass materials that can be used as substitutes. To overcome the lack of thermoplasticity of wood, a wet extrusion molding process for wood powder using a cellulose derivative, hydroxypropylmethyl cellulose (HPMC), had been developed. However, this material quickly reabsorbed water, swelled, and disintegrated in liquid. In the present study, a natural organic acid, citric acid, was added and kneaded together with the wood powder, the HPMC, and water. The resultant clay-like material was extruded into a tube-shaped material. The tube was air-dried and heated at 180 °C for 5 min to 30 min to allow crosslinking. By heating 1% citric acid for 30 min, the material avoided disintegrating in water for 60 min. The addition of 3% citric acid with 30 min crosslinking gave the material water resistance in water for 12 h. The degradability in the water was found to be controllable by changing the amount of citric acid and the heating time. This is a novel result because wood can be molded into a practical three-dimensional (3D) biomass composite material using this technology with natural substances without relying on petroleum-based plastics.


2020 ◽  
Vol 140 ◽  
pp. 25-29
Author(s):  
K Akiyama ◽  
N Hirazawa ◽  
A Hatanaka

Oxytetracycline (OTC) has been commonly used as an effective antibiotic against various fish bacterial diseases, including vibriosis. In this study, the absorption-enhancing effect of citric acid on oral OTC pharmacokinetics and treatment of artificial Vibrio anguillarum infection was evaluated in juvenile yellowtail Seriola quinqueradiata followed by serum OTC concentration analysis. When 25 mg kg-1 body weight (BW) OTC was administered in combination with 1250 mg kg-1 BW citric acid, the serum OTC concentration reached almost the same concentration as that of the group treated with 50 mg kg-1 BW OTC. This coadministration successfully suppressed mortality due to vibriosis similar to the group treated with 50 mg kg-1 BW OTC. Conversely, poor efficacy was observed when only 25 mg kg-1 BW OTC was administered. These results suggest that coadministration of citric acid can be beneficial in reducing the dose of OTC needed for effective treatment, and thus contributes to the goal of reduced use of this antibiotic in aquaculture.


1963 ◽  
Vol 42 (4) ◽  
pp. 480-484 ◽  
Author(s):  
B. Eckstein ◽  
R. Landsberg

ABSTRACT The succinic, malic and isocitric dehydrogenases in the ovary of immature and mature, normal and serum gonadotrophin injected rats were examined. The Qo2 of these enzymes were markedly enhanced in the gonadotrophin injected rats of both age groups, except in the case of succinic dehydrogenase in the ovary of the immature rats, where a slight non-significant decrease was noted. It is concluded that in the mature rat ovary, gonadotrophin administration stimulates the activity of all the examined dehydrogenases of the citric acid cycle, whereas in the immature rat ovary, at least the isocitric- and malic dehydrogenases are thus stimulated.


1998 ◽  
Vol 29 (4-5) ◽  
pp. 294-299
Author(s):  
A. A. Vasil'yev ◽  
V. F. Vishnyak ◽  
I. I. Didenko ◽  
V. N. Panchenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document