scholarly journals Elastic Deformation Effects on Self-Lubricating Journal Bearings Using Pseudo-Plastic Lubricants

2021 ◽  
Vol 16 (4) ◽  
pp. 299-308
Author(s):  
Maamar Malki ◽  
Salah Larbi ◽  
Sid Ali Boubendir ◽  
Djamel Hammoudi ◽  
Rachid Bennacer
2020 ◽  
Vol 36 (6) ◽  
pp. 943-953
Author(s):  
Zhuxin Tian ◽  
Runchang Chen

ABSTRACTA new derivation considering the non-linear terms has been proposed to calculate stiffness and damping coefficients for short hydrodynamic journal bearings lubricated with pseudo-plastic fluids. The proposed method has relaxed the constraint of small perturbation method applicable to only small values of non-Newtonian factor α. An analytical solution is also given. The non-linear Reynolds equation is solved with a more reasonable boundary condition ∂p*/∂z* = 0 at the location of z*=0 while the analytical pressure distribution is obtained by seven-point Gauss-Legendre integral formula. When the non-dimensional non-Newtonian factor α is small, the stiffness and damping coefficients of computed by the proposed method can agree well with those from small perturbation method, which could verify the proposed derivation. As for large non-dimensional non-Newtonian factor α, the stiffness coefficients $K_{XX}^*$ , $K_{XY}^*$ and $K_{YX}^*$ as well as the damping coefficients $C_{XX}^*$ , $C_{XY}^*$ and $C_{YX}^*$ decrease with the increasing of non-dimensional non-Newtonian factor α. The significance of the derivation is that it can relax the constraint of small α and simplify the computation process.


2020 ◽  
Vol 10 (10) ◽  
pp. 3529
Author(s):  
Sung-Hwa Jeung ◽  
Junho Suh ◽  
Hyun Sik Yoon

This paper presents the change of non-dimensional characteristics and thermal behavior of different sized tilting pad journal bearings (TPJBs) with the same Sommerfeld number. A three-dimensional (3D) TPJB numerical model is provided considering the thermo-elastic hydro-dynamic (TEHD) lubrication model with pad thermal-elastic deformation. The pivot stiffness is assumed to be the combination of linear and cubic stiffness based on the Hertzian contact theory. The TPJBs in a configuration of load between pad (LBP) with the same Sommerfeld number having seven different sizes are simulated, and their non-dimensional dynamic and static characteristics and thermal behavior are compared. Pad thermal and elastic deformation are both taken into account. If the changes in lubricant viscosity, thermal deformation, and elastic deformation of journal/pads due to viscous shearing are ignored, the bearings with identical Sommerfeld numbers should show the same performance characteristics. However, the heat generation at the bearing clearance during operation (a) induces a decrease in viscosity and heat transfer to journal/pads and (b) results in a thermal deformation. Furthermore, the elastic deformation of the tilting pads and pivots also affects the bearing dynamic performance. For the same Sommerfeld number, the numerical analyses provide how the viscous shearing and elastic deformation lead to a change in bearing performance. For the small bearings with the same Sommerfeld number, the non-dimensional characteristics did not change significantly, where the heat generation was small being compared to the large sized bearing. The largest change in non-dimensional characteristics occurred when the maximum temperature of the oil film increased by 30 °C or more compared to the lubricant supply temperature. The root cause of the change in the non-dimensional characteristics is the viscous shearing in the oil film, and the thermal deformation of the structures surrounding the oil film acts in combination. These results provide insight into the Sommerfeld number, which can be used for the early stage of bearing design.


1967 ◽  
Vol 89 (4) ◽  
pp. 409-415 ◽  
Author(s):  
J. O’Donoghue ◽  
D. K. Brighton ◽  
C. J. K. Hooke

This paper presents a solution to the problem of hydrodynamic lubrication of journal bearings taking into account the elastic distortions of the shaft and the bearing. The exact solution for determining the elastic deformation for a given pressure distribution around a bearing is given, together with the reiterative procedure adopted to find the pressure distribution which satisfies both the hydrodynamic and elastic requirements of the system. Results are given which have been derived for a material with a Poisson’s ratio of 0.28, but other values such as 0.33 do not incur substantial errors. The results can be applied to a wide range of operating conditions using the nondimensional group of terms suggested in the paper. The bearing is assumed to be infinite in length, and infinite in thickness. The latter assumption is shown to be valid for a particular case where the outside diameter of the bearing shell is 3.5 times the shaft diameter. A further assumption in the calculation is a condition of constant viscosity of the lubricant existing around the bearing.


Author(s):  
B. Chetti

This work is an investigation of the performance characteristics of an offset journal bearing lubricated with a fluid with couple stresses taking into consideration the elastic deformation of the liner. The couple stresses might be expected to appear in noticeable magnitudes in liquids containing additives with large molecules. The modified Reynolds equation has been solved using the finite difference method. Load carrying capacity, attitude angle, side leakage and friction coefficients are determined for various values of couple stress parameter of a rigid and deformable bearing. It is found that, the static characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids. It is concluded that, the elastic deformation of the bearing has significant influence on the bearing characteristics.


2014 ◽  
Vol 66 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Jun Sun ◽  
Xinlong Zhu ◽  
Liang Zhang ◽  
Xianyi Wang ◽  
Chunmei Wang ◽  
...  

Purpose – Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual situation and usable to the journal bearing design, the purpose of this paper was to calculate the lubrication characteristics of misaligned journal bearings considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. Design/methodology/approach – The lubrication of bearings was analyzed using the average Reynolds equation. The deformation of the bearing surface under oil film pressure was calculated by a compliance matrix method. The compliance matrix was established by finite element analysis of the bearing housing. The viscosity-pressure and viscosity–temperature equations were used in the analysis. Findings – The oil viscosity-pressure relationship has a significant effect on the lubrication of misaligned journal bearings. The surface roughness will affect the lubrication of misaligned journal bearings when the eccentricity ratio and angle of journal misalignment are all large. The directional parameter of the surface has an obvious effect on the lubrication of misaligned journal bearings. The deformation of the bearing surface has a remarkable effect on the lubrication of misaligned journal bearings. Originality/value – The lubrication characteristics of misaligned journal bearings were calculated considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. The results of this paper are helpful to the design of the bearing.


Sign in / Sign up

Export Citation Format

Share Document