Analytical geochemistry of organic phosphorus and its correlation with organic carbon in marine and fluvial sediments and soils

1992 ◽  
Vol 292 (6) ◽  
pp. 421-454 ◽  
Author(s):  
A. J. Ramirez ◽  
A. W. Rose
2008 ◽  
Vol 5 (2) ◽  
pp. 281-298 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia ◽  
F. Cerutti

Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.


2020 ◽  
Vol 163 ◽  
pp. 05012
Author(s):  
Ekaterina Sharapova ◽  
Ludmila Efimova ◽  
Irina Denisova ◽  
Aida Ermekova ◽  
Mikhail Lychagin ◽  
...  

The article considers the features of biogenic elements and organic carbon (Corg) content spatial variability in the Lake Baikal tributaries. The role of hydrological conditions and landscape-geochemical features in the chemical elements flow formation is shown. It was found that organic carbon in the river waters is represented mainly by its dissolved form. In the lower reaches of the Selenga, erosion processes and economic activity in the catchment area increase the proportion of suspended forms of organic carbon and mineral phosphorus. In the river delta under the influence of the sedimentation and the intake of organic matter formed during aquatic vegetation decomposition, the content of dissolved Corg increases with a contemporary decrease in its suspended form. As a result of intensification of production and destruction processes in well-heated areas of the delta, a significant decrease in the concentrations of mineral phosphorus and an increase in organic phosphorus occur.


2015 ◽  
Vol 149 ◽  
pp. 23-52 ◽  
Author(s):  
Shane D. Schoepfer ◽  
Jun Shen ◽  
Hengye Wei ◽  
Richard V. Tyson ◽  
Ellery Ingall ◽  
...  

2019 ◽  
Vol 45 (1) ◽  
pp. 245 ◽  
Author(s):  
A. Halifa-Marín ◽  
P. Pérez-Cutillas ◽  
M. Almagro ◽  
C. Boix-Fayos

Anthropic changes in the drainage area of catchments can influence dominant erosion processes and sediment sources and mobilize specific carbon pools. It also causes changes in the sedimentary dynamics and thus in the fluvial morphology. At the same time fluvial morphologies can create the conditions for stabilizing organic carbon (OC) in sediments by burial, carbon preservation, slowing down mineralization processes, and terrestrial or aquatic plant colonization. All this might have a significant impact on the fluvial carbon sink or sources. This work explores the impact of changes in the drainage area (reforestation, check-dam building, agricultural abandonment) on fluvial morphology and on the sedimentary carbon sink of an arid and erodible catchment. The methodological approach combines cartographic analysis of land use, geomorphological photointerpretation of the channel and slope-channel connections in 1956 and 2016. Furthermore, soil and sediment sampling across the catchment for organic carbon stock determination was carried out. The watershed underwent a drastic transformation of land use from 1956, changing from an agrarian scenario to a forest pattern in 2016. This evolution altered sedimentological dynamics and fluvial morphologies. The active channel was narrowed (52%) whereas bank erosion (77%) and the adjacent gullies (11%) increased. The inner alluvial plain increased up to 31% and alluvial fans up to 37%. In addition, vegetation in the channel increased up to 16%. All this led to an increase of the total OC pool of fluvial sediments (12%), slightly above than the increase of OC total pool in the soils of the catchment (10%). The ratio of the OC stock sediments/soils was > 0.8, which indicates the large capacity of carbon sequestration of fluvial sediments, with OC stocks larger than those of agricultural soils. It was found that the geomorphological dynamics plays an important role in the OC fluvial flows. In scenarios of channel narrowing and vegetation encroachment of fluvial morphologies, the sediments can stabilize and generate OC sinks. These processes of OC sequestration in dry and ephemeral channels can have a large relevance for various ecosystem services and should be considered in the management of fluvial sedimentary areas.


2011 ◽  
Vol 16 (2) ◽  
pp. 111
Author(s):  
Patricia Chavez de Oliveira ◽  
Claudio José Reis de Carvalho

<p class="standard"><strong>Objective. </strong>With the purpose of knowing the strategies of tolerance of two phosphorus-accumulating species (<em>Neea macrophylla </em>and<em> Cecropia palmate</em>) and a non-accumulating species (<em>Casearia arborea</em>) to phosphorus-deficient soils, we characterized the rhizosphere of these species using a multivariate analysis and correlation matrices in relation to the concentrations of organic phosphorus, available phosphorus, soil organic carbon, organic carbon from  microbial biomass,  acid phosphatase enzyme activity, and root infection by mycorrhizal fungi. <strong>Materials and methods. </strong>The research was carried out in the Igarapé-Açú town, state of Pará, Brazil in secondary forests with five years of regeneration, where the parameters above mentioned were monitored. <strong>Results</strong>. Results did not reveal significant differences between the species depending on the characteristics of the soil next to the rhizospheres, suggesting homogeneous conditions. The enzymatic activity was slightly higher in the species with less potential in accumulating P (<em>Casearia arborea</em>) suggesting that efficiency in P use is not determined by the enzymatic activity. <strong>Conclusions</strong>. <em>Neea macrophylla</em> presented a slightly higher number of mycorrhizal root infections in comparison to the other species, indicating that this could be a tolerance strategy in those environments, while in <em>Cecropia palmata</em> and <em>Casearia arborea</em> it seems that enzymatic activity is the strategy employed.</p> <p><strong>Key words:</strong> acid phosphatase; Brazilian Amazon; rhizosphere</p>


Author(s):  
M. W. Banoub ◽  
P. J. leB. Williams

A seasonal survey of particulate and dissolved organic material was made at E1 in the English Channel during 1968. The average integral mean values were: dissolved organic carbon 65 μg-at C/l (780 μg C/l); dissolved organic nitrogen 4·6 μg-at N/l (64 μg N/l); dissolved organic phosphorus 0·12 μg-at P/l (3·8 μg P/l); particulate organic carbon 190 μg C/l and particulate organic nitrogen 21 μg N/l. Dissolved organic carbon and the particulate organic carbon and nitrogen showed increases subsequent to the spring bloom; such increases were less evident in the dissolved organic nitrogen results and not apparent in those of dissolved organic phosphorus.Analyses were also made in March and June in 1969 at two other stations in the English Channel, in addition to E1. The results from the three stations were basically similar.


Sign in / Sign up

Export Citation Format

Share Document