Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A.

2004 ◽  
Vol 304 (2) ◽  
pp. 105-168 ◽  
Author(s):  
P. G. DeCelles
Tectonics ◽  
2014 ◽  
Vol 33 (9) ◽  
pp. 1659-1680 ◽  
Author(s):  
Mariya Levina ◽  
Brian K. Horton ◽  
Facundo Fuentes ◽  
Daniel F. Stockli

Author(s):  
Chance B. Ronemus ◽  
Devon A. Orme ◽  
Saré Campbell ◽  
Sophie R. Black ◽  
John Cook

The Bridger Range of southwest Montana, USA, preserves one of the most temporally extensive sedimentary sections in North America, with strata ranging from Mesoproterozoic to Cretaceous in age. This study presents new detrital zircon geochronologic data from eight samples collected across this mountain range. Multidimensional scaling and non-negative matrix factorization statistical analyses are used to quantitatively unmix potential sediment sources from these and 54 samples compiled from previous studies on regional correlative strata. We interpret these sources based on reference data from preserved strata with detrital zircon signatures likely representative of ancient sediment sources. We link these sources to their sinks along sediment dispersal pathways interpreted using available paleogeographic constraints. Our results show that Mesoproterozoic strata in southwest Montana contain detritus derived from the nearby craton exposed along the southern margin of the fault-bounded Helena Embayment. Middle Cambrian strata were dominated by the recycling of local sources eroded during the development of the Great Unconformity. In Devonian−Pennsylvanian time, provenance in southwest Montana shifted to more distal sources along the northeastern to southeastern margins of Laurentia, but more western basins received detritus from outboard sources along a tectonically complicated margin. By the Late Jurassic, provenance in the developing retroarc foreland basin system was dominated by Cordilleran magmatic arcs and fold-thrust belt sources to the west. Eastward propagation of the fold-thrust belt caused recycling of Paleozoic and Jurassic detritus into the foreland basin to dominate by the Early Cretaceous.


2015 ◽  
Vol 186 (4-5) ◽  
pp. 273-290 ◽  
Author(s):  
Maurizio Gasparo Morticelli ◽  
Vera Valenti ◽  
Raimondo Catalano ◽  
Attilio Sulli ◽  
Mauro Agate ◽  
...  

Abstract Neogene-Quaternary wedge-top-basins arose during the Sicilian fold and thrust belt (FTB) build-up. The infilling sedimentary successions are: i) middle-upper Miocene silicoclastics succession, accommodated on top of the accreted Sicilide and Numidian flysch nappes; ii) upper Miocene-lower Pliocene deepening-upwards sediments unconformably overlying the inner Meso-Cenozoic deep-water, Imerese and Sicanian thrust units; iii) Upper Pliocene-Quaternary coastal-open shelf deposits unconformably covering (in the outer sector of the FTB) a tectonic stack (Gela thrust system). These successions are characterized by a basal unconformity on the deformed substrate believed to be the depositional interface common both to the coeval wedge-top and foredeep basins. The tectono-sedimentary evolution of the syn-tectonic basins was controlled by the progressive deepening of the structural levels, which were active during the growing of the FTB. The palinspastic restoration of a crustal geological transect in central Sicily points to: i) the occurrence of two subsequent, basal main thrusts (MT1 and MT2) active during the Neogene-middle Pleistocene tectonic evolution, as well as ii) a decrease in slip- and shortening-rate, estimated for the later MT2 as compared to earlier MT1 basal main thrust. The foreland-basin system evolution recorded during these two steps suggests: – the regional lithofacies distribution, during late Tortonian-early Pliocene, accounted for a wide depozone including the Iblean plateau and its offshore;– a crucial change was recorded by the late Pliocene-Pleistocene wedge-top depozone, when the deeper basal main thrust (MT2) involved and thickened (in the inner sector of the FTB) the crystalline basement (thin- to thick-skinned thrust tectonics); this change influenced the depozones, progressively narrowing up to the present-day setting. As regards this general evolutionary framework, thin-skinned and thick-skinned thrust tectonics can be recognized in the Sicilian FTB evolution. The late Tortonian-early Pliocene, thin-skinned thrust tectonics include two main tectonic events, a “shallow-seated” Event 1 and a “deep-seated” Event 2, with the Pliocene-Pleistocene thick-skinned thrust tectonics representing a third tectonic event (Event 3).


2017 ◽  
Vol 479 ◽  
pp. 83-97 ◽  
Author(s):  
Tomas N. Capaldi ◽  
Brian K. Horton ◽  
N. Ryan McKenzie ◽  
Daniel F. Stockli ◽  
Margaret L. Odlum

2021 ◽  
Author(s):  
Salvatore Critelli ◽  
Sara Criniti

The sandstone composition of foreland basin has a wide range of provenance signatures, reflecting the interplay between flexed underplate region and abrupt growth of the accreted upper plate region. The combination of contrasting detrital signatures reflects these dual plate interactions; indeed, several cases figure out that the earliest history of older foreland basin infilling is marked by quartz-rich sandstones, with cratonal or continental-block provenance of the flexed underplate flanks. As upper plate margin grows over the underplate, the nascent fold-and-thrust belt starts to be the main producer of grain particles, reflecting the space/time dependent progressive unroofing of the subjacent orogenic source terranes. The latter geodynamic processes are mainly reflected in the nature of sandstone compositions that become more lithic fragment-rich and feldspar-rich as the fold-thrust belt involves the progressive deepest portions of upper plate crustal terranes. In this context sandstone signatures reflect quartzolithic to quartzofeldspathic compositions.


Sign in / Sign up

Export Citation Format

Share Document