scholarly journals Erratum to: Fatty acids related genes expression undergo substantial changes in porcine oviductal epithelial cells during long-term primary culture

2021 ◽  
Vol 9 (4) ◽  
pp. ii-ii
Author(s):  
Bartosz Kempisty
2018 ◽  
Vol 6 (2) ◽  
pp. 39-47 ◽  
Author(s):  
Joanna Budna ◽  
Piotr Celichowski ◽  
Sandra Knap ◽  
Maurycy Jankowski ◽  
Magdalena Magas ◽  
...  

Abstract The process of reproduction requires several factors, leading to successful fertilization of an oocyte by a single spermatozoon. One of them is the complete maturity of an oocyte, which is acquired during long stages of folliculogenesis and oogenesis. Additionally, the oviduct, composed of oviductal epithelial cells (OECs), has a prominent influence on this event through sperm modification and supporting oocyte’s movement towards uterus. OECs were isolated from porcine oviducts. Cells were kept in primary in vitro culture for 30 days. After 24h and on days 7, 15 and 30 cells were harvested, and RNA was isolated. Transcript changes were analyzed using microarrays. Fatty acids biosynthetic process and fatty acids transport ontology groups were selected for analysis and described. Results of this study indicated that majority of genes in both ontology groups were up-regulated on day 7, 15 and 30 of primary in vitro culture. We analyzed genes involved in fatty acids biosynthetic process, including: GGT1, PTGES, INSIG1, SCD, ACSL3, FADS2, FADS1, ACSS2, ALOX5AP, ACADL, SYK, ACACA, HSD17B8, FADS3, OXSM, and transport, including: ABCC2, ACSL4, FABP3, PLA2G3, PPARA, SYK, PPARD, ACACA and P2RX7. Elevated levels of fatty acids in bovine and human oviducts are known to reduce proliferation capacity of OECs and promote inflammatory responses in their microenvironment. Most of measured genes could not be connected to reproductive events. However, the alterations in cellular proliferation, differentiation and genes expression during in vitro long-term culture were significant. Thus, we can treat them as putative markers of changes in OECs physiology.


1995 ◽  
Vol 31 (5) ◽  
pp. 367-378 ◽  
Author(s):  
Gary K. Ostrander ◽  
James B. Blair ◽  
Beverly A. Stark ◽  
Garry M. Marley ◽  
Wesley D. Bales ◽  
...  

2013 ◽  
Vol 432 (4) ◽  
pp. 558-563 ◽  
Author(s):  
Takahito Katano ◽  
Akifumi Ootani ◽  
Tsutomu Mizoshita ◽  
Satoshi Tanida ◽  
Hironobu Tsukamoto ◽  
...  

2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5349
Author(s):  
Mayes Alswady-Hoff ◽  
Johanna Samulin Erdem ◽  
Santosh Phuyal ◽  
Oskar Knittelfelder ◽  
Animesh Sharma ◽  
...  

There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 152
Author(s):  
Melita Lončarić ◽  
Ivica Strelec ◽  
Tihomir Moslavac ◽  
Drago Šubarić ◽  
Valentina Pavić ◽  
...  

Lipoxygenases are widespread enzymes that catalyze oxidation of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) to produce hydroperoxides. Lipoxygenase reactions can be desirable, but also lipoxygenases can react in undesirable ways. Most of the products of lipoxygenase reactions are aromatic compounds that can affect food properties, especially during long-term storage. Lipoxygenase action on unsaturated fatty acids could result in off-flavor/off-odor development, causing food spoilage. In addition, lipoxygenases are present in the human body and play an important role in stimulation of inflammatory reactions. Inflammation is linked to many diseases, such as cancer, stroke, and cardiovascular and neurodegenerative diseases. This review summarized recent research on plant families and species that can inhibit lipoxygenase activity.


1996 ◽  
Vol 40 (5) ◽  
pp. 1116-1120 ◽  
Author(s):  
I Walev ◽  
S Bhakdi

An important determinant of nephrotoxicity, which is the major complication of long-term amphotericin B treatment, is dysfunction of distal tubular epithelial cells. The underlying cause for this rather selective damage to the cells is unknown. In the present investigation, it was shown that kidney epithelial cells were initially damaged by amphotericin B at concentrations of 2.5 to 10 micrograms/ml, as demonstrable by a dramatic drop in cellular K+ levels. Cells could recover from the initial toxic action of the polyene if they were kept in medium of neutral pH, and cellular K+ levels returned to normal after 6 h. However, the recovery mechanisms failed at lower pHs of 5.6 to 6.0. At low pHs, cells became progressively depleted of ATP; they leaked lactate dehydrogenase and became irreversibly damaged after approximately 6 h. The possibility that the low pH characteristic of the distal tubulus lumen renders the renal epithelial cells particularly vulnerable to the toxic action of amphotericin B is raised. The concept is in line with an earlier report that alkalization ameliorates amphotericin B nephrotoxicity in rats.


Author(s):  
Haiyan Xu ◽  
Dan Song ◽  
Renfang Xu ◽  
Xiaozhou He

AbstractAberrant expression of B cell–activating factor belonging to TNF superfamily (BAFF) and its receptors results in abnormal biological activities in hematopoietic and non-hematopoietic cells and is closely associated with the occurrence and development of various diseases. However, the biological significance and potential mechanisms underlying BAFF signaling in renal tubular epithelial cells (RTECs) remain unknown. This study aimed to investigate the biological role of BAFF signaling in RTECs. Mice primary RTECs were applied. The proliferation status and apoptotic rates were examined by MTS assay and flow cytometry, respectively. The expression of BAFF and its receptors was analyzed via flow cytometry and sodium ion transport function, and cytokeratin-18 expression was detected through immunofluorescence staining. In addition, Pin1 was knocked down via siRNA and its expression was assessed through reverse transcription PCR. Lastly, western blotting was performed to analyze E-cadherin, ɑ-SMA, and Pin1 expression. Results suggested that BAFF-R was significantly upregulated upon IFN-γ stimulation, and enhancement of BAFF signaling promoted cell survival and reduced their apoptotic rate, while simultaneously reducing the epithelial phenotype and promoting the interstitial transformation of cells. Furthermore, Pin1 was significantly increased, along with the upregulation of BAFF signaling in the RTECs, and participated in interstitial transformation induced by BAFF signaling. Collectively, the present results elucidate the potential mechanism of loss of normal function of RTECs under long-term high dose of BAFF stimulation provides a potential therapeutic target for renal interstitial fibrosis, and underlining mechanisms of shortening of long-term outcomes of kidney allografts via augmenting of BAFF signaling.


Sign in / Sign up

Export Citation Format

Share Document